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Abstract

In this study, we investigated the feasibility of applying neural networks to understanding movement-based visual signals. Networks based ol
three different models were constructed, varying in their input format and network architecture: a Static Input model, a Dynamic Input model and
a Feedback model. The task for all networks was to distinguish a liZawgi(bolurus muricatus) tail-flick from background plant movement.
Networks based on all models were able to distinguish the two types of visual motion, and generalised successfully to unseen exemplars. W\
used curves defined by the receiver-operating characteristic (ROC) to select a single network from each model to be used in regression analys
of network response and several motion variables. Collectively, the models predicted that tail-flick efficacy would be enhanced by faster speed:
greater acceleration and longer durations.
© 2005 Elsevier B.V. All rights reserved.
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Research on animal communication systems has consider¢idations of the processes involved in signal detection, and
the information content of signals and the factors that influthe mechanisms that ensure signals are discriminated from the
enced their design. Constraints on signal design affect sign&lackground.
generation, transmission through the environment, and recep- The quantitative analysis of signal structure is often com-
tion (Endler, 1992. Of recent interest is the role that receivers bined with empirical investigations whereby predictions based
(e.g., social companions, opponents or potential mates) hawn structure can be tested. Designing experiments of this kind
played in signal evolutiorRyan and Rand, 1990; Endler, 1991; becomes increasingly challenging as the number and complexity
Guilford and Dawkins, 1991; Pagel, 1993; Endler and Basolopf parameters that can be manipulated increases. Typically, how-
1999. Signals must be designed to stimulate the sense organs efer, researchers make intuitive judgements about the parame-
intended receivers. Some signals have evolved to exploit thegers that are likely to be important to receivers, based on their
pre-existing biasefyan and Rand, 1993; Basolo, 199@hile  own knowledge of the system. An alternative approach is to use
others are likely to be a product of the interaction betweemodels such as artificial neural networks (henceforth called neu-
receiver sensory systems and environmental conditions, or ‘senal networks) that actin the place of areceiver to identify a subset
sory drive’ Endler, 1992 A detailed understanding of sig- of variables worthy of closer attention. Neural networks draw
nal structure has helped to disentangle the evolutionary faaipon the general properties of nervous systems, such that sen-
tors responsible for their design such as for acoustic signalsory information is distributed across a network of neuron-like
(summarised itHopp et al., 1998 and static visual signals ‘units’, and response to incoming information is determined by
(e.g., colour pattern€Endler, 1990. It also allows for inves- the strength of connections between them. A major advantage

of this approach over more traditional computational models
is their ability to learn. Neural networks have been used for

— _ _ classifying animal signals, and have already made important
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1998; Deecke et al., 1999; Borst and Haag, 2002; Enquist andformation about the signaller, such as size and condition. Dis-
Ghirlanda, 200p plays by the Australian jacky lizard\nphibolurus muricatus)

There is increasing evidence that neural networks offer a usere comprised of five distinct motor patterns delivered in an
ful alternative for classifying animal signals. Traditional meth-obligatory sequence and typically begin with a series of tail
ods for classification, such as discriminant function analysisflicks (Peters and Ord, 2003 herefore the two classes of visual
cluster analysis, or multi-dimensional scaling, can be relativelynotion presented to the networks comprised the introductory
inefficient. In contrast, neural networks perform well whentail-flicks of jacky lizards as the class requiring detection, and
the input is noisy and there is no priori basis for (within  the movement of wind-blown plants as the irrelevant background
species) classificatiofReby et al. (1997)rained a neural net- motion against which tail-flicks are typically seen. Building
work to discriminate between the vocalisations of four maleupon analyses of signal structurigeters and Evans, 2003a
fallow deer Pama dama), achieving a discrimination accuracy the modelling work presented herein helped design playback
of 88%. Potter et al. (1994)ised a similar network to discrim- experiments testing the efficacy of different tail-flicking strate-
inate marine mammal vocalisations (bearded sgagnathus  gies in this systemHReters and Evans, 2003iBy including
barbatus; beluga whalesDelphinapterus leucuas) from noise  neural network modelling in our research program we identified
(including wave noise and a variety of sounds produced by icepoth expected (speed and acceleration effects: Egjshman,
Increased sample sizes and an alternative approach to definii§92 and unexpected (a duration effect) mediators of recogni-
input resulted in an accuracy of 98.5%. Neural network classifition. We have since obtained strong experimental evidence that
cation of marine mammal vocalisations have recently been usetie duration effect is principally responsible for signal efficacy
to provide an index of acoustic similarity suitable for compar-(Peters and Evans, 2003b
isons across studies, species, and tibeecke et al., 1999

Neural networks have also been used to explore how serl. Materials and methods
sory and perceptual processes might influence the evolution of
biological signalsEnquist and Arak (1993nodelled one way We constructed three different neural network models that
in which biases inherent in signal recognition systems couldiaried in their input format and network architecture. In the
influence signal design, antbhnstone (1994)ised a similar  Static Input model, the input was collapsed over time. The
network and training procedure to illustrate preferences for lowesponse of a population of artificial sensory units, each tuned
levels of fluctuating asymmetry and ornament elaboration. Simito a particular velocity and summed across the time domain
lar strategies were adopted to model the evolution of exploitatiofsee Peters et al., 2002 was used as the input to a feed-
and honestyKrakauer and Johnstone, 1996ourtship rituals  forward network with backward propagation of error to mod-
(Wachtmeister and Enquist, 200@nd mimicry Holmgrenand ify connection weights (e.g.Haykin, 1999. In subsequent
Enquist, 1999 In a different approachihelps and Ryan (1998) models, we introduced time and considered both signal and
used genetic algorithms, whereby network ‘fitness’ reflects tha@oise as temporal sequences. Theiamic Input model con-
effect of selection, evolving networks to recognise calls of thesidered sensory unit responses over time and similarly com-
Tlngara frog Physalaemus pustulosus) against noise with the prised a feed-forward architecture. However, this model was
same amplitude envelope. Remarkably, responses of fematet error-correcting, rather, weights were updated using an asso-
frogs in playback experiments showed the same biases as the neiative learning rule Grossberg, 1976n a fashion conceptu-
works. Work of this kind illustrates how modelling can elucidateally similar to Hebbian learning. ThEeedback model used a
the relationship between signal structure and receiver responsescursive architecture specifically designed to capture temporal
(see alsdshirlanda and Enquist, 1998; Phelps and Ryan, 2000yariation Elman, 1990; Phelps and Ryan, 1998 contrast
Phelps et al., 2001 Used in this way, neural networks help to feed-forward networks, an additional layer stores activity
to focus research strategy before time-consuming fieldwork oso that the network ‘remembers’ its previous internal state.
captive experiments are undertaken. The inputs to the Feedback model were estimates for speed

To our knowledge, neural networks have not been appliedver time.
to classify movement-based animal signals. Recent develop- The training strategy for all three models was the same
ments in the quantitative analysis of visual motiatei{ and irrespective of architecture. Tail-flick and wind-blown plant
Zanker, 1997; Peters et al., 200w make it possible to extend sequences were randomly allocated to non-overlapping train-
their use to this class of signals. Our goal in the present studiyng and test sets. The training set was used to train each network
was to investigate whether neural networks can be trained ttw distinguish the signal from noise. Network performance was
recognise two different classes of visual motion, and to examassessed in terms of its ability to generalise to the unseen exem-
ine which motion parameters are likely to mediate networkplars in the test set. The Static Input and Feedback models were
responses; importantly, our goal was to generate testable prieaplemented using the Neural Network Toolbox (v.3) for Mat-
dictions rather than to recreate the processing capabilities d&b (v.5) on a Macintosh computer. The Dynamic Input model
the brain. We constructed several types of networks, howevewas custom written in C++ and implemented on a PC running
the task for each was to discriminate between the motion chak/indows 2000.
acteristics of a movement-based animal signal and irrelevant The complete data set used for training and testing each of
background motion. Lizards use movement-based displays ithe models comprised 181 tail-flick sequences and 64 sequences
territorial disputes between rival males that function to provideof wind-blown plants Acacia longifolia, Grevillea linearfolia,
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Kunzea ambigua, Pteridium esculentum, Xanthorrhea arborea) 0.4
recorded at the field site where these lizards were captured ant
representative of the plant species that form the background tc
their displays. Recordings of wind-blown plants were under-
taken in summer during light to typical wind conditions over
the range from 0.7 to 2.0 nT$ (seePeters and Evans, 2003a
for details). The tail-flick sequences included variations in the
angle and distance between the lizard and the camera used t
record the display. Successful training thus required that the
model develop some degree of translation invariance. Tail-flicks
were recorded in response to the introduction of a conspecific 011

Slow

male placed in front of a resident’s enclosure (Beters and ) 0.08 |

Ord, 2003for details). All sequences were quantified using the £

approach described Beters et al. (2002Briefly, digital video 2 E o064

footage is converted to image sequences of intensity (greyscaleg g

values at 25 frames per second (PAL standard). A computationa;g 2 0.04

motion analysis algorithm is used to calculate velocity estimates §

by tracking changes in image intensity. The algorithm assumes ﬁ 0.02 1

a locally constant image structure and calculates the velocity %‘o__o__o_é--g..o--o-.o__o__Q__Q__o__Q.-o--o
field from temporal and spatial derivatives of filtered versions of O
image intensity. Output from this procedure comprises estimates 0.025 1

of velocity for each frame of the image sequence. As velocity is
determined separately for all spatial locations (i.e., all intensity
values) a given frame will therefore comprise many estimates. In
the first two models, the velocity field is summarised by a fam-
ily of 48 sensory units that have a preferred direction and speed
of movement. Velocity information is therefore reduced to the
response levels of these sensory units. Input to the third mode
comprises a single estimate of vector magnitude (or ‘speed’) per
frame. 0

Fast
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Preferred direction

1.1. Static Input model ) ) ) )
Fig. 1. Mean £S.D.) normalised sensory unit response to the tail-flkgnd

. plant (O) sequences presented to the Static Input model. Preferred direction is
11.1. Netwo;_’k input o plotted on tha-axis, and separate plots are presented for the slow (top), moderate
The velocity field of a subset of tail-flick and plant sequencesmiddle) and fast (bottom) speed preferences.

was first quantified using the procedure described above. The
resulting velocity estimates were then summarised using a gl

e . . . . ~this defined the task for the network. Sequences were randoml
of 48 artificial sensory units defined by Gaussian functions wnki d y

llocated to either atraining (35 tail-flick and 33 plant sequences)

maximum values tuned to a particular direction and speed o f test set (50 tail-flick and 31 plant sequences).

movement (16 directions 3 speeds; as péteters et al., 2002;
Peters and Evans, 2003athe sensory units are used to sum-
marise velocity rather than reflect actual units in the lizard brain)!--2. Network architecture _ . .

All estimates from a given frame are presented to each of the Preliminary modelling determined an appropriate architec-
sensory units. For a given sensory unit, if an estimate exacti{re eters, 2008 The model comprised the input, two hidden
matches its preferred direction and speed, a value of 1 is added'@/€rs and an output layeFig. 2a). The 48 inputs were sep-
the response level of this unit; if the estimate is outside the rang@rated according to their relative speed preference resulting in
for a given sensory unit, in the opposite direction for example,t_hree input Iayers with 16 elements each (i.e., .16 preferred direc-
nothing is added to the response level of this unit. This is don&0NS). Each input layer was connected to a hidden layer of four
for each frame of the sequence, so that sensory unit response |{its Via fixed connections that were not updated during train-
els represent the combined response to all frames of the imadféd (Se€Fig. 2a). These units were connected to all units in a
sequence. Sensory unit responses were then length normalisg@cond hidden layer, where the number of units varied, 7,

to restrict input to the range [0,1]: 13 or 18). These hidden layer units were, in turn, all connected
to a single unit in an output layer. Connections between the first
I = Ri((R:2+ Ro?+ R2 + - + R482)70'5) (1) andsecond hidden layers, and from the second hidden layer to

the output layer were subject to learning. The activity level of
The average normalised response of sensory units to tail-flicksidden units in the second hidden layer and the output layer unit
and wind-blown plants in the training set is presenteBim 1; were defined by a sigmoid transfer function, limiting unit output
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in the range [0,1]: sequences. As the response from the output unit is constrained
1 in the range [0,1], a target lower than the maximum allows for
Y=(1+exp*) (2)  the detection of ‘super-normal’ tail-flick sequences that exceed

those upon which the networks were trained. The gradient
descent back-propagation algorithigrbos, 1974; Rumelhart
1.1.3. Network training etal., 198¢was usedto train the networks. Briefly, network error

We supervised training by giving the network a target out-(i-€-, the difference between the target and the output produced

put for all training vectors: 0.8 for tail-flicks and 0.2 for plant bY the network) is a function of the weights connecting network
units and so adjustments should be made so as to minimise this

error function. Weight changes are made in an iterative manner
whereby the error is passed backwards through the network so
that the relative contribution of a given weight to the overall error
can be determined and small changes to the weight can be per-
formed. New weights are selected in the direction of the steepest
gradient (or slope) of the error function, until it reaches a mini-
mum. We varied both the number of units in the second hidden
layer (2, 7, 13 and 18) and the duration of training, measured in
epochs (i.e., the number of times the input set is presented to the
network: 18 x 1, 5, 10, 20, 50 and 100 epochs). The factorial
combination of hidden layer unit size (four levels) and training
duration (six levels) resulted in a total of 24 networks.

wherea is the sum of weighted inputs plus the unit’s bias.

QUTPUT LAYER

HIDDEN LAYERS

INPUT LAYERS

ST N : 1.1.4. Analysis of network performance
b ool ted The performance of each of the 24 networks was examined

NOHREESNNNHHFEED first by presenting the training set to the trained networks.

(a)

Fig. 2. Schematic representation of the neural network models used to dis-
OUTPUT LAYER ° B criminate the tail-flick signal from plant movement. In all models, dashed lines
represent fixed weights not modified during training. (a) Stagic Input model
- n F2 was a feed-forward network with two hidden layers and an output layer. There
were 48 inputs to the network representing different velocities summed over
HIDDEN LAYERS . . . .
time. Inputs were separated according to their relative speed preference result-
n n F1 ing in three input layers of 16 elements each (i.e., 16 preferred directions). Each
S 2 s input layer was connected to a hidden layer of four units via fixed connections
that were not updated during training. This pre-processing reduced direction
INPUT LAYERS | 16 | | 16 ] I 16 ‘ Fo preferences from 16 to 4 units. These units were connected fully to a second
hidden layer, where the number of units varie¢ @, 7, 13 or 18). These hidden
layer units were, in turn, all connected to a single unit in an output layer. Con-
nections between the first and second hidden layers, and from the second hidden
layer to the output layer were subject to learning. The activity level of hidden
@ units in the second hidden layer and the output layer unit were defined by a
L T S T, sigmoid transfer function; no transfer function was used in the first hidden layer.
R L S v v CTETE, TSR Training was achieved using the gradient descent back-propagation algorithm.
S50 1+ 1 v 50 1 A T 1 [ A . . .

(b) TheDynamic Input model also comprised a feed-forward network with two
hidden layers and an output layer. The input layer (FO) comprising 48 sensory
unit responses bi-frames, separated into three speed classes, were collapsed

T into four general directions of movement and length normalised in the firsthidden

Output layer (F1). The output from F1 was passed to the second hidden layer (F2) ona 1-
Layer to-1 basis after being passed through a filter that prevented low levels of activity
(less than the threshafiifrom moving to the second hidden layer. The four units
per speed class inthe second hidden layer were linked to the output layer unit (F3)
viaweighted connections, which were the only connections modified by training.
Hl_igs;'_" The activity of F2 and F3 units is described fully in the text. (c) Faedback

model was a recurrent network using estimates for speed over time as the input.

The input layer is connected to the hidden layer, which is then connected to the

output layer. However, in order to represent time and to provide the network with
Input % a form of memory, the hidden layer units are also connected to a context layer,
Layer |7t=1 P — which stores the activity levels of each unit in the hidden layer. This is achieved
L Layer using connection weights of 1, which are not modified during training. The con-
Xt=3 text layer is connected back to the hidden layer; these weights are updated during
: training. Hidden layer units therefore integrated current input (input layer) as
well as activity from the previous time step (context layer). The sigmoid transfer
function defined the response probabilities of hidden units and the output unit.

© | CROVLERRRGEAAT]

@ |
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This was followed by presentation of the test set to assess tt
networks’ ability to generalise to unseen exemplars. In bott
cases, the response of the network was determined by the outg
from the single unit in the output layer. Network responses tc
tail-flick and plant sequences were compared individually using,
t-tests, separately for the training and test sets. We also asses:g -«
performance by converting network output to a binary responsz *
indicating whether a tail-flick was present in the input sequence m”
Network output was transformed from a continuous score in th:
range [0,1] to a score of 1 if it exceeded a given threshold; oth
erwise it was set to 0. Reducing network responses in this wa
enabled us to perform signal detection analysis on the network:
performance $wets, 1961 We then shifted the threshold for
detection between 0 and 1 (increments of 0.1) whereby th
change in correct decisions and false alarms defined a receiv
operating characteristic (ROC) curve for each network.

To conclude this approach to modelling recognition, we con-
sidered which, if any, characteristics of the test set predicte
network responses. For this purpose, we chose the network tha)
showed the greatest sensitivity to tail-flicks, as defined by th
ROC curve (i.e., the network that maximised the hit rate, while
minimising the number of false alarms) and performed stepwis
regression of network output against sequence duration, as we g,
as average and maximum measures for speed and acceleratig
All calculations were made according to procedures outlined i|§ &0
Peters et al. (2002) =

80

1.2. Dynamic Input model

1.2.1. Network input

The second model differed from the first in that it considerec
changes in sensory unit response over time. Calculation of se
sory unit responses to the velocity field were identical to tha
described for the Static Input model with one important differ-
ence: responses were stored separately for each frame of t
sequence rather than summed over time. The input now con
prised 48 sensory units (16 directior8 speeds) byv-frames;
the number §) of frames varied between sequences. An illus{®)
tration of the type of input presented to the network is shown irkig. 3. Sensory unit response over time for representative (a) tail-flick and (b)
Fig. 3. We used a different training strategy than for the Staticplantsequences presented to the Dynamic Input model. Units are presented from
Input model. First, as the temporal properties of the signal wergpward movement then to the right (R), down and left (L).
now preserved, and because jacky lizard tail-flicks vary con-
siderably in terms of signal duratioPéters and Ord, 2093 this, we draw on the fact that tail-flicks are rare relative to the
a subset of the tail-flick sequences was selected (range: 9-2810tion of wind-blown plants so we adjusted the frequency of
frames; mean: 71 frames; median: 58 frames). Plant sequence@nt sequences to reflect the difference in probability of the two
were then chosen to match as close as possible the distributigfasses of visual motion events. This was achieved by increasing
of tail-flick sequence length (range: 15-235 frames; mean: 8ihe number of plant sequences for a given duration to generate
frames; median: 72 frames). Second, as described below, the pﬂ@put data sets that varied in the number of tail-flicks relative to
cess by which the network learns is different to that presented iplant sequences (signal-to-noise ratios of 1:10, 1:20 and 1:100).
the previous model. Connections between units are strengthened
when both are “firing’, and importantly, are weakened when thel.2.2. Nerwork architecture
output unit does not ‘fire’ (i.e., when the network is told that  The architecture of the Dynamic Input model is depicted in
the input sequence features wind-blown plants). Consequentlizig. 2b; it comprises an input layer, two hidden layers and an
the network learns that certain units are not associated with taibutput layer. The model processes each speed class from the
flicks. We therefore wished to examine how much experiencénput layer separately. Within each speed class, the raw sensory
with wind-blown plants is needed before the network effec-unit responses in the input layer (FO) were first collapsed into
tively learns to ignore certain unit activity. In order to implement four general directions of movement and length normalised. The
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output from the first hidden layer (F1) was passed to the seconghit in the absence of F3 unit activity results in the weakening
hidden layer (F2) on a 1-to-1 basis after being passed throughaf the connection between these units (i.e., the network learns
filter that prevented low levels of activity (less than the thresholdhat activity in this F2 unit does not signal the presence of a
/) from moving to the second hidden layer. The four units perconspecific). There is no change in the weight when the F2 unit
speed class in the second hidden layer were linked to the outpiginactive (i.e., whenr; = 0). Learning rules with such properties
layer unit (F3) via weighted connections, which were the onlyhave been referred to as non-Hebbian or gated steepest descent
connections modified by training. (Grossberg, 1976

The inputs to the network were the raw sensory unitresponses The set of differential Eq$3), (5) and(6) were solved numer-
over time Fig. 3). The first hidden layer (F1) performed pre- ically using Euler's method with a step size of 0.01. A process
processing as described above. The activity of F2 units waef empirical adjustment of parameters determined that setting
modelled over time according to the following differential equa-all parametersf{ A, B and ) at 0.05 resulted in satisfactory

tion: learning.
dx;
G —Ax; + ms; 3) 1.2.3. Network training and performance assessment

] o o We did not vary the size of hidden layers in this model or the
wherebys; is the activity of theith unit in the F1 layery; the  {raining duration, and as such created only one version of this
activity of theith unit in the F2 layerd the rate of decay of unit  ,qqel. During training, each input sequence was presented once
activity andm is a multiplier (10) that scales the response of F2jy 4 random order. The network modified connection weights
units to activity in F1 units. between the 12 units in F2 (4 per speed class) and the output

The activity of the F3 output unit (denotgdl was updated  nit in F3. Discrimination performance was examined as in the
through a process of interactive activation. The first step was t@atic Input model.

calculate the net input to the unit:

1= (3 gt 100 2

whereg; is the weight from théth unit in F2 to F3 and" defined 1.3.1. Network input

the input during training as a tail-flick or plant sequence (1 and 0, Inputto the Feedback model consisted of a single estimate of

respectively);T was set to 0 during network testing, regardlesss'peed per frame for 100 frames (4 s). Recall that for any given

of input type. The change in activity for the output unit Wasframe_ of the image sequence there will be many estlmqtes of
velocity, according to the amount of movement detected in the

1.3. The Feedback model

defined by:

I y scene by the motion analysis algorithm (&egers et al., 2002
dy —By+I(1—y), if(I=0) In the previous two models we retained both components of
@ _By+1Iy, if(I<0) (5) velocity (i.e., direction and speed), however, here we retain only

vector magnitude, or speed. This value is determined for each

whereB is the rate of decay of the output unit. This ensured thagestimate using Pythagoras’ Theorem. A single estimate for speed

F3 unit activity decreased when plant sequences were presentéd; each frame was then calculated by averaging across these
but increased when a tail-flick was presented; activity decayedalues; an illustration of the type of input used is presented in
toward zero in the absence of input. Fig. 4 From the subset of tail-flick sequences completed within
The connection weights;{ between units in the second hid- 100 frames, we randomly selected 30 to be used for training;
den layer (F2) and the output unit (F3) were modified during30 sequences of wind-blown plant movement were also ran-

training. Weight changes were determined by the differentiatlomly selected. The test set comprised 55 tail-flick sequences

equation: and 34 plant sequences not presented during training. Due to
4 software constraints, it was necessary to standardise the duration
dztl =M1 —z)x;(y — z2) (6)  ofinput sequences. Consequently, we zero-padded the tail-flick

sequences that were less than 100 frames in duration so that the
In this equation, learning ig} is stabilised (i.e., g/dr=0) when  movement started at different times within each sequence but all
(y—=i)=0. That is, the weighy; tracks the value of: the weight  finished at frame 100.

increases when the output unit fires and decreases (toward 0)

when the output unit is not firing. The inclusionxgfin Eq.(6)  1.3.2. Network architecture

implies that learning in the weight from thigh F2 unit to the The Feedback model was a recurrent netw&tkngn, 1999
outputunitcanonly take place when ttieF2 unitisitselfactive.  consisting of four layers: the input layer, two hidden layers (one
The termi is a parameter that controls the rate of learning, anaf which is a context layer), and an output layer (&g 2c).

the term (1— z;) ensures that weights do not exceed an uppeiThe input layer is connected to the hidden layer, which is then
bound of 1. Thus, the simultaneous activation of an F2 unit andonnected to the output layer. However, in order to represent
the F3 unitresultsin the strengthening of the connection betweeiime and to provide the network with a form of memory, the
these units (i.e., the network learns that activity in this F2 unithidden layer units are also connected to a context layer, which
can signal the presence of a conspecific), as in Hebbian learningtores the activity levels of each unit in the hidden layer. This is
However, unlike standard Hebbian learning, activation of an Fachieved using connection weights of 1, which are not modified
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Speed (pixels/frame)

Time (frames)

Fig. 4. Representative speed-time profiles for tail-flio® &nd wind-blown plant movementY) presented to the Feedback model.

during training. The context layer is connected back to thed.f.=1;p<0.0001 for each). The response of the networks to
hidden layer; these weights are updated during training. Hiddethe previously unseen test set is presente@ig Sb. While
layer units therefore integrated current input (input layer) aperformance was reduced relative to the training set, the net-
well as activity from the previous time step (context layer).works were still capable of discriminating reliably between the
The network produces an output at each time-step (equal t@il-flick and plant movement sequences 4.8-14.6; d.f.=1;
the duration of the input), however the final output value wag <0.0001 for each). The network responses to both the training
considered to be the networks’ response to the input sequencnd test sets suggest moderate improvement with longer training
Response properties of all hidden units and the output unit wergurations, while the effect of increasing the number of hidden
defined by the sigmoid transfer functi¢®). layer units was most notable when increased from 2 to 7; further
increases in the number of hidden layer units did not improve

1.3.3. Network training perfor.m_ance. L — ..
The input sequences were presented randomly during train- Shifting the criterion for tail-flick recognition between 0 and

ing. The network was trained using the gradient descent back @ssessed the signal detection performance of each network.
propagation algorithm, using the sum of squares error terml N€ change in correct decisions and false alarms is defined by
Weights were only updated after all input sequences had bedh€ ROC curve for each network. Rgpresentatlve ROC.curves
presented. We trained the network to a response of 1 for taiff®m the 24 networks are presentedHiig. 6. Each plot depicts
flicks and O for plant sequences. A total of 15 networks werdh® best (closed circles) and worst (open circles) performing net-
constructed varying in hidden layer size (1, 2 and 5 units) andvorks at each hidden layer size, and showed that all networks

training duration (25, 50, 100, 300 and 500 epochs). p_erformed better than chance (diagonal line). Furthermo_re, the
distance of the ROC curve from chance level performance is pos-

itively related to its ability to discriminate signals from noise,

1.3.4. Analysis of network performance _ and consequently, the best performing network can be regarded
The performance of each of the 15 networks was examined byq 1he one that maximised this separation. In the present anal-

presenting the training set to the trained network. This was fol- sis, the best network featured seven hidden layer units and a

lowed by presentation of the test set to the network. The respon%/%ining duration of 50,000 epochBig. & closed circles) and

ofthe network was determined by the final output from the Singl%vas subsequently used in regression analysis. Of the variables

unitin the output layen-Tests were used to compare responsegy ¢ yere used to summarise the input sequences of the test set,
to the two types of visual motion for a given network, separatelyonly average and maximum speed were found to be significant

for the training and test sets. ROC curves were generated to ide fedictors of network responsé&(@,78)=93.391p<0.0001,
tify the best performing network, and stepwise regressions of it djustedr? = 0.698:Table J.

response against predictor variables were conducted in the same

manner as for the other models.

2.2. Dynamic Input model

2. Results
The mean (+S.D.) response of the Dynamic Input model

2.1. Static Input model to sequences after training is presentedFig. 7, and the

relationship between network response and sequence duration

Mean network response=G.D.) to the training set by train- is presented irFig. 8 The network was unable to discrim-

ing duration and size of the second hidden layer is presented inate tail-flicks from the background noise when these were
Fig. 5a. As can be seen, the networks were able to discriminateommon during training (1:10 signal-to-noise ratie: 0.54;
between tail-flick and plant movement sequence®(3-31.6; d.f.=92; p=0.589), and the response was highly correlated
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Fig.5. Mean£S.D.) response of Static Input model networks to the (a) training and (b) test sets by training duration for tal#fl&ic\Wind-blown plant movement
(O). Separate plots are presented for different numbers of units in the second hidden layer (2, 7, 13 and 18). All networks were successful anhditiee twoat
classes of visual motion in both training and test setegtsp <0.05).

with sequence duration (tail-flickk?=0.82,p <0.001; plants: p <0.0001). Thisis apparent primarily in the very small response
R%2=0.91, p<0.001; Fig. 8a). Discrimination performance Of the network to plant sequences, which was now unrelated to
started to improve when the signal-to-noise ratio was reducegequence durat_igrRE =0.08;Fig. &). The response to tail-flicks

to 1:20¢=2.23; d.f. = 92p = 0.028); however response was still remained sensitive to sequence duratigf<0.71,p <0.001;
highly correlated with sequence duration (tail-flig =0.72,  Fig. &). A stepwise regression indicated that sequence dura-
p<0.001; plants®Z=0.95,p <0.001;Fig. 8b). Further reduc- tion and maximum speed explained approximately half of the
tion in the signal-to-noise ratio (1:100) during training sub-total variance in network responsg(,78) =41.59p = 0.000,
stantially improved discriminationF{g. 7; r=5.02; d.f.=92; adjusted’?=0.504;Table 9.
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False Alarms

Fig. 6. Receiver operating characteristic (ROC) curves for the @9strid worst (O) performing networks of the Static Input model for hidden layer sizes of (a) 2,
(b) 7, (c) 13 and (d) 18 units. The worst performing network for each hidden layer size was trained £6¢ £pochs. The best performing networks for (a, ¢ and
d) were trained for 1& 10° epochs, while (b) was trained for 5010° epochs. The diagonal straight line represents chance performance.

2.3. The Feedback model duration of less than 500 failed to discriminate input sequences
(r=0.588-1.272; d.f. =581>0.10); the longer training time of
Mean network response-S.D.) to the training set by training 500 epochs resulted in better performances.563; d.f. =58;
durationand hidden layer size is presentdeign 9a. Therewasa p<0.001 and=17.70; d.f. =58p <0.0001 for 1 and 2 hidden
clear effect of hidden layer size as well as training duration. Netunits, respectively). Discrimination improved with five hidden
works with either 1 or 2 units in the hidden layer and a trainingunits, and when coupled with longer training durations (300 or
500 epochs) performance was very high (i.e., very low vari-
ance in network response)H0.632; d.f. =58p > 0.1 following
19 training for 25 epochs, while= 7.4—620.0; d.f. =58 < 0.0001
for durations of 50, 100, 300 and 500 epochs). The response
081 of the networks to the previously unseen test set mirrored that
of the training setKig. %); networks with five hidden layer
units and longer training performed best. Networks with one or
two hidden layer units and less than 500 epochs during train-
ing failed to discriminate the input patterns=(0.658-1.333;
0.2 - d.f.=87;p>0.10). Longer training improved performance for
| one ¢=6.024; d.f. =87p <0.001) and twor(= 15.939; d.f. =87,
p<0.001) hidden units. The network with a short (25 epochs)
1to10 1to 20 1 to 100 training duration and five hidden units was unable to discrim-
Signal-to-noise ratio inate the input patterng £0.668; d.f.=87;p>0.10), while
Ca 7 M +SD ‘ i dwind.bl | !ong_er;r_aining c_jura_ltiqns (50, 100, 300 and 500 epochs) resulted
ig. 7. Mean (+S.D.) network response to tail flcl @nd wind-blown plant ., o0 nigicant” discrimination performance=(8.737-197.241;
movement({J) by the signal-to-noise ratio during training for the Dynamic Input L )
model. (*) A significant difference between network response to the tail-flicksd-f- = 87;p <0.0001). ROC curves for networks with five hidden
and plant movemenp( 0.05). layer units are presented kig. 10 Networks with long train-

0.6 -

0.4 4

Network response
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Table 1
Results of stepwise regression of network response and motion parameters for each of the three neural network models
Variables Un-standardised coefficients Standardised coefficients
B S.E. Beta t P
Static Input model
Constant 0.023 0.037 —0.614 0.541
Average speed 0.216 0.049 0.573 4.372 0.000
Maximum speed 0.104 0.047 0.290 2.209 0.030
Dynamic Input model
Constant —0.233 0.037 —6.315 0.000
Sequence duration 0.001 0.000 0.402 5.063 0.000
Maximum speed 0.143 0.021 0.550 6.929 0.000
Feedback model
Constant 0.014 0.055 0.262 0.793
Average speed 0.569 0.044 0.784 12.961 0.000
Maximum speed —0.193 0.027 —0.415 —7.197 0.000
Maximum acceleration 0.199 0.041 0.318 4.901 0.000
Excluded variables Standardised coefficients
Betaln t P
Static Input model
Sequence duration —0.041 —0.439 0.662
Average acceleration 0.018 0.152 0.880
Maximum acceleration 0.024 0.272 0.786
Dynamic Input model
Average speed 0.056 0.367 0.714
Average acceleration —0.032 —0.253 0.801
Maximum acceleration —0.237 —-1.815 0.073

Feedback model
Average acceleration (sequence duration not entered) —0.031 —0.446 0.656

ing times (300 and 500 epochs) resulted in near perfect signal Three models were presented that varied in the input struc-
detection performance, while the network with the shortest trainture, network architecture and the manner in which they
ing period (25 epochs) actually performed worse than chancéearned’. The Static Input model was designed to capture the
(opencircles). Regression analysis of network (five hidden unitsstructure of visual motion input in terms of direction and speed
trained for 300 epochs) response against predictor variabldge., velocity), while ignoring temporal information by collaps-
revealed that average and maximum speed, as well as maximung across the time domaifrig. 1). In contrast, the other two
acceleration were significant predictors of network responsenodels incorporated temporal information. The Dynamic Input
(F(3,194) =130.152 < 0.0001, adjusteft? = 0.663;Table J). model considered estimates for velocity over tifaig( 3), while

the Feedback model was presented with sequential estimates for

velocity magnitude (i.e., speeé#fig. J). The first two models
3. Discussion comprised a feed-forward architecture with two hidden layers

and an output layeFg. 2a and b), whereas a recurrent network

Neural network methodology has proven a useful tool forwas used for the Feedback modEid. 2c), which is designed

understanding signal design and evolution (eEmquist and to capture temporal variation by means of a context layer that
Arak, 1993; Johnstone, 1994; Ryan et al., 200b date, this ‘remembered’ its previous state. All models were supervised
approach has been mostly applied to artificial indemduist ~ during training, meaning that correct outputs were provided to
and Arak, 1993 and bioacousticsRhelps and Ryan, 1998; the network. In the case of the Static Input and Feedback mod-
Deecke et al., 1999The present paper extends the applicatiorels, connection weights were adjusted to better match its output
of neural networks to the discrimination of a movement-basedo the target, using the back-propagation learning algorithm. In
animal signal from background plant movement, using bottcontrast, in the Dynamic Input model, error was not propagated
static and time-varying input patterns. We show that networkd®ackward through the network. Weights were adjusted during
of varying design can be trained to distinguish input derivedraining when the connected units (from different layers) were
from two different classes of visual motion. It is important both ‘firing’, according to an associative (gated steepest descent)
to emphasise that our goal was to examine the feasibility ofearning rule.
using neural networks as a statistical tool for understanding Several versions of the Static Input and Feedback models
behaviour, rather than to investigate the neural mechanismsere created with systematic variation in hidden layer size and
involved in discriminating types of visual motion. training duration (see Sectidh). Signal detection analysis was
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17 " as sequence duratiofgble J). Maximum speed was shown to be
. a significant predictor of network response for all three models,
08 - . . while average speed was significant for the Static Input and
' " Feedback models, and maximum acceleration for the Feedback
8° model only. Sequence duration only predicted network response
0.6 Ll for the Dynamic Input model. It is not surprising that sequence
ud duration did not affect the other two models, as the nature of the
. input to these models would likely have masked any effect of this
047 f n variable. The sensory unit input to the Static Input model was
calculated frame-by-frame and then summed across time. As a
0.2 consequence, the same input profile could have been derived
B o from a short sequence with lots of activity, or a long sequence
. with intermittent activity. Similarly, the input to the Feedback
model was standardised to 100 frames (4 s), by zero padding of
sequences that were shorter.
. These results suggest that the Static Input and Feedback
. models used structural differences in visual motion (i.e., veloc-
0.8 - ity) as the basis for learning the discrimination between sig-
um nal and noise during training. Furthermore, discrimination
n could be performed based on calculation of velocity magni-
0-6 1 u o ° tude (speed) alone. This is consistent with behavioural findings
in other lizards Anolis auratus; reviewed inFleishman, 1992
04 - " Fleishman (19863howed that response probability to artificial
o lures was greatest when the stimulus had high velocity and accel-
" '5:'0. 8° eration values; a characteristic of the initial portion of their visual
02 1 n =‘.°o 0 ° display Fleishman, 1988 In circumstances where the goal is
o ¥ R to classify motor patterns and other types of visual motion, it
J@% . is likely that relatively simple networks, like those of the Static
Input and Feedback models, will be suitable. However, conspic-
uousness is not sufficient to fully explain signal desiBetérs
and Evans, 2003aThe jacky lizard tail-flick is the first of five
distinct motor patterns, which are performed in response to a
0.8 A . conspecific intruder and expressed in an obligatory sequence
(Peters and Ord, 2003We have shown previously that four
out of the five motor patterns have structural characteristics

Network response
| |
| |

G
o
1

067 - distinct from background noisé”éters and Evans, 2003&0
" structure alone cannot account for the tail-flick being the intro-
0.4 - - " ductory component. Predictions from the Dynamic Input model
- . suggested that duration is an important factor determining sig-
. " nal efficacy. This prediction was tested in a recent playback
02 1 . study investigating the relative importance of several motion
LTy "% variables Peters and Evans, 2003IResults demonstrated that
0 ¢ 0oo a ©° o o tail-flick efficacy does indeed depend upon duration, suggesting
0 50 100 150 200 250 that short displays may be ineffective for attracting attention,
(© Sequence duration regardless of intensity. This close match between the response

Ei . . . characteristics of the Dynamic Input model and the behaviour
ig. 8. Response of Dynamic Input model networks to tail-flidi&nd wind- . . . .
blown plant movement())) as a function of sequence duration. Plots are for of these lizards suggests that this architecture might be the most
different signal-to-noise ratios of (a) 1:10, (b) 1:20 and (c) 1:100. appropriate for predicting the effect of signal variation on real
receivers.
then used to determine the relative performance of each network. Neural networks can hence be used in combination with quan-
Comparisons between ROC curvégys. 6 and 1pallowed for  titative analyses of signal structure and experimental analyses of
selection of a single optimal network for each model. All modelsreceiver responses. By identifying patterns of structural varia-
correctly classified the two different classes of visual motiontion in visual motion input, these models help to isolate the
used during training, and generalised successfully to previouslsubset of variables that are likely to be most important, so that
unseen inputKigs. 5, 7 and P Regression analyses were thenthese can be manipulated experimentally. This approach com-
used to examine the relationship between network response apdres favourably with the alternative of making unguided or
average and maximum values for speed and acceleration, as waltuitive choices, which are perhaps less likely to correspond
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Fig. 9. Mean £S.D.) response of Feedback model networks to the (a) training and (b) test sets by training duration (epochs) for tili}-ticétsnind-blown
plant movement()). Separate plots are presented for different numbers of hidden units (1, 3 and 5). (*) A significant difference between network response to t
tail-flicks and plant movemenp& 0.05).

with the parameters that are important to the lizards. In outo explore recognition of a large number of synthetic sequences,
current research, we utilize 3D digital animations to exploreso that we can select a subset of these for presentation to live
signal recognition in the jacky lizard€ters and Evans, 2003b  lizards using digital video playback. The general approach we
which allows us to construct any number of motor patterns in are advocating here is not limited to movement-based signals;
mathematically-precise manner. Trained networks will be used similar strategy has already proven successful in predicting
response biases in the acoustic domBimglps and Ryan, 1998

In conclusion, the present analysis has shown that the study
of movement-based animal signals has the potential to benefit
from the application of neural network methodology. Networks
from each of the three models were highly successful at discrim-
inating the signal from noise. However, we expect that neural
networks will be particularly useful for identifying more subtle
differences in structure than those we have presented, such as
in comparisons between individuals performing the same motor
pattern. Furthermore, the performance of the Dynamic Input
model is encouraging because it predicted behavioural findings
that would not be expected based on analyses of structure alone.
Further development of this approach to studying signal design
will help to direct future research into the evolution of this class
of animal signals.
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