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Discriminating signal from noise: Recognition of a movement-based
animal display by artificial neural networks
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Abstract

In this study, we investigated the feasibility of applying neural networks to understanding movement-based visual signals. Networks based on
three different models were constructed, varying in their input format and network architecture: a Static Input model, a Dynamic Input model and
a Feedback model. The task for all networks was to distinguish a lizard (Amphibolurus muricatus) tail-flick from background plant movement.
Networks based on all models were able to distinguish the two types of visual motion, and generalised successfully to unseen exemplars. We
used curves defined by the receiver-operating characteristic (ROC) to select a single network from each model to be used in regression analyses
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f network response and several motion variables. Collectively, the models predicted that tail-flick efficacy would be enhanced by fas
reater acceleration and longer durations.
2005 Elsevier B.V. All rights reserved.
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Research on animal communication systems has considered
he information content of signals and the factors that influ-
nced their design. Constraints on signal design affect signal
eneration, transmission through the environment, and recep-

ion (Endler, 1992). Of recent interest is the role that receivers
e.g., social companions, opponents or potential mates) have
layed in signal evolution (Ryan and Rand, 1990; Endler, 1991;
uilford and Dawkins, 1991; Pagel, 1993; Endler and Basolo,
998). Signals must be designed to stimulate the sense organs of

ntended receivers. Some signals have evolved to exploit these
re-existing biases (Ryan and Rand, 1993; Basolo, 1990), while
thers are likely to be a product of the interaction between
eceiver sensory systems and environmental conditions, or ‘sen-
ory drive’ (Endler, 1992). A detailed understanding of sig-
al structure has helped to disentangle the evolutionary fac-

ors responsible for their design such as for acoustic signals
summarised inHopp et al., 1998) and static visual signals
e.g., colour patterns:Endler, 1990). It also allows for inves-
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tigations of the processes involved in signal detection,
the mechanisms that ensure signals are discriminated fro
background.

The quantitative analysis of signal structure is often c
bined with empirical investigations whereby predictions ba
on structure can be tested. Designing experiments of this
becomes increasingly challenging as the number and comp
of parameters that can be manipulated increases. Typically,
ever, researchers make intuitive judgements about the pa
ters that are likely to be important to receivers, based on
own knowledge of the system. An alternative approach is to
models such as artificial neural networks (henceforth called
ral networks) that act in the place of a receiver to identify a su
of variables worthy of closer attention. Neural networks d
upon the general properties of nervous systems, such tha
sory information is distributed across a network of neuron
‘units’, and response to incoming information is determine
the strength of connections between them. A major adva
of this approach over more traditional computational mo
is their ability to learn. Neural networks have been used
classifying animal signals, and have already made impo
chool of Biological Sciences, Australian National University, Canberra, ACT
601, Australia. Tel.: +61 2 6125 5066; fax: +61 2 6125 3808.

E-mail address: richard.peters@anu.edu.au (R.A. Peters).

contributions to understanding evolutionary processes, sensory
biases and constraints on signal design (Enquist and Arak, 1993;
Johnstone, 1994; Bateson and Horn, 1994; Phelps and Ryan,
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1998; Deecke et al., 1999; Borst and Haag, 2002; Enquist and
Ghirlanda, 2005).

There is increasing evidence that neural networks offer a use-
ful alternative for classifying animal signals. Traditional meth-
ods for classification, such as discriminant function analysis,
cluster analysis, or multi-dimensional scaling, can be relatively
inefficient. In contrast, neural networks perform well when
the input is noisy and there is noa priori basis for (within
species) classification.Reby et al. (1997)trained a neural net-
work to discriminate between the vocalisations of four male
fallow deer (Dama dama), achieving a discrimination accuracy
of 88%.Potter et al. (1994)used a similar network to discrim-
inate marine mammal vocalisations (bearded seal,Erignathus
barbatus; beluga whales,Delphinapterus leucuas) from noise
(including wave noise and a variety of sounds produced by ice).
Increased sample sizes and an alternative approach to defining
input resulted in an accuracy of 98.5%. Neural network classifi-
cation of marine mammal vocalisations have recently been used
to provide an index of acoustic similarity suitable for compar-
isons across studies, species, and time (Deecke et al., 1999).

Neural networks have also been used to explore how sen-
sory and perceptual processes might influence the evolution of
biological signals.Enquist and Arak (1993)modelled one way
in which biases inherent in signal recognition systems could
influence signal design, andJohnstone (1994)used a similar
network and training procedure to illustrate preferences for low
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information about the signaller, such as size and condition. Dis-
plays by the Australian jacky lizard (Amphibolurus muricatus)
are comprised of five distinct motor patterns delivered in an
obligatory sequence and typically begin with a series of tail
flicks (Peters and Ord, 2003). Therefore the two classes of visual
motion presented to the networks comprised the introductory
tail-flicks of jacky lizards as the class requiring detection, and
the movement of wind-blown plants as the irrelevant background
motion against which tail-flicks are typically seen. Building
upon analyses of signal structure (Peters and Evans, 2003a),
the modelling work presented herein helped design playback
experiments testing the efficacy of different tail-flicking strate-
gies in this system (Peters and Evans, 2003b). By including
neural network modelling in our research program we identified
both expected (speed and acceleration effects: e.g.,Fleishman,
1992) and unexpected (a duration effect) mediators of recogni-
tion. We have since obtained strong experimental evidence that
the duration effect is principally responsible for signal efficacy
(Peters and Evans, 2003b).

1. Materials and methods

We constructed three different neural network models that
varied in their input format and network architecture. In the
Static Input model, the input was collapsed over time. The
response of a population of artificial sensory units, each tuned
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evels of fluctuating asymmetry and ornament elaboration. S
ar strategies were adopted to model the evolution of exploit
nd honesty (Krakauer and Johnstone, 1995), courtship rituals
Wachtmeister and Enquist, 2000), and mimicry (Holmgren and
nquist, 1999). In a different approach,Phelps and Ryan (199
sed genetic algorithms, whereby network ‘fitness’ reflect
ffect of selection, evolving networks to recognise calls of
úngara frog (Physalaemus pustulosus) against noise with th
ame amplitude envelope. Remarkably, responses of fe
rogs in playback experiments showed the same biases as t
orks. Work of this kind illustrates how modelling can elucid

he relationship between signal structure and receiver resp
see alsoGhirlanda and Enquist, 1998; Phelps and Ryan, 2
helps et al., 2001). Used in this way, neural networks he

o focus research strategy before time-consuming fieldwo
aptive experiments are undertaken.

To our knowledge, neural networks have not been ap
o classify movement-based animal signals. Recent dev
ents in the quantitative analysis of visual motion (Zeil and
anker, 1997; Peters et al., 2002) now make it possible to exten

heir use to this class of signals. Our goal in the present s
as to investigate whether neural networks can be train

ecognise two different classes of visual motion, and to ex
ne which motion parameters are likely to mediate netw
esponses; importantly, our goal was to generate testabl
ictions rather than to recreate the processing capabiliti

he brain. We constructed several types of networks, how
he task for each was to discriminate between the motion
cteristics of a movement-based animal signal and irrele
ackground motion. Lizards use movement-based displa
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o a particular velocity and summed across the time do
see Peters et al., 2002), was used as the input to a fe
orward network with backward propagation of error to m
fy connection weights (e.g.,Haykin, 1999). In subsequen

odels, we introduced time and considered both signa
oise as temporal sequences. TheDynamic Input model con-
idered sensory unit responses over time and similarly
rised a feed-forward architecture. However, this model
ot error-correcting, rather, weights were updated using an
iative learning rule (Grossberg, 1976) in a fashion conceptu
lly similar to Hebbian learning. TheFeedback model used a
ecursive architecture specifically designed to capture tem
ariation (Elman, 1990; Phelps and Ryan, 1998). In contras
o feed-forward networks, an additional layer stores act
o that the network ‘remembers’ its previous internal s
he inputs to the Feedback model were estimates for s
ver time.

The training strategy for all three models was the s
rrespective of architecture. Tail-flick and wind-blown pl
equences were randomly allocated to non-overlapping
ng and test sets. The training set was used to train each ne
o distinguish the signal from noise. Network performance
ssessed in terms of its ability to generalise to the unseen
lars in the test set. The Static Input and Feedback models

mplemented using the Neural Network Toolbox (v.3) for M
ab (v.5) on a Macintosh computer. The Dynamic Input mo
as custom written in C++ and implemented on a PC run
indows 2000.
The complete data set used for training and testing ea

he models comprised 181 tail-flick sequences and 64 sequ
f wind-blown plants (Acacia longifolia, Grevillea linearfolia,



54 R.A. Peters, C.J. Davis / Behavioural Processes 72 (2006) 52–64

Kunzea ambigua, Pteridium esculentum, Xanthorrhea arborea)
recorded at the field site where these lizards were captured and
representative of the plant species that form the background to
their displays. Recordings of wind-blown plants were under-
taken in summer during light to typical wind conditions over
the range from 0.7 to 2.0 m s−1 (seePeters and Evans, 2003a
for details). The tail-flick sequences included variations in the
angle and distance between the lizard and the camera used to
record the display. Successful training thus required that the
model develop some degree of translation invariance. Tail-flicks
were recorded in response to the introduction of a conspecific
male placed in front of a resident’s enclosure (seePeters and
Ord, 2003for details). All sequences were quantified using the
approach described byPeters et al. (2002). Briefly, digital video
footage is converted to image sequences of intensity (greyscale)
values at 25 frames per second (PAL standard). A computational
motion analysis algorithm is used to calculate velocity estimates
by tracking changes in image intensity. The algorithm assumes
a locally constant image structure and calculates the velocity
field from temporal and spatial derivatives of filtered versions of
image intensity. Output from this procedure comprises estimates
of velocity for each frame of the image sequence. As velocity is
determined separately for all spatial locations (i.e., all intensity
values) a given frame will therefore comprise many estimates. In
the first two models, the velocity field is summarised by a fam-
ily of 48 sensory units that have a preferred direction and speed
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Fig. 1. Mean (±S.D.) normalised sensory unit response to the tail-flick (�) and
plant (©) sequences presented to the Static Input model. Preferred direction is
plotted on thex-axis, and separate plots are presented for the slow (top), moderate
(middle) and fast (bottom) speed preferences.

this defined the task for the network. Sequences were randomly
allocated to either a training (35 tail-flick and 33 plant sequences)
or test set (50 tail-flick and 31 plant sequences).

1.1.2. Network architecture
Preliminary modelling determined an appropriate architec-

ture (Peters, 2003). The model comprised the input, two hidden
layers and an output layer (Fig. 2a). The 48 inputs were sep-
arated according to their relative speed preference resulting in
three input layers with 16 elements each (i.e., 16 preferred direc-
tions). Each input layer was connected to a hidden layer of four
units via fixed connections that were not updated during train-
ing (seeFig. 2a). These units were connected to all units in a
second hidden layer, where the number of units varied (n = 2, 7,
13 or 18). These hidden layer units were, in turn, all connected
to a single unit in an output layer. Connections between the first
and second hidden layers, and from the second hidden layer to
the output layer were subject to learning. The activity level of
hidden units in the second hidden layer and the output layer unit
were defined by a sigmoid transfer function, limiting unit output
f movement. Velocity information is therefore reduced to
esponse levels of these sensory units. Input to the third m
omprises a single estimate of vector magnitude (or ‘speed
rame.

.1. Static Input model

.1.1. Network input
The velocity field of a subset of tail-flick and plant sequen

as first quantified using the procedure described above
esulting velocity estimates were then summarised using
f 48 artificial sensory units defined by Gaussian functions
aximum values tuned to a particular direction and spee
ovement (16 directions× 3 speeds; as perPeters et al., 200
eters and Evans, 2003a,b, the sensory units are used to su
arise velocity rather than reflect actual units in the lizard br
ll estimates from a given frame are presented to each o
ensory units. For a given sensory unit, if an estimate ex
atches its preferred direction and speed, a value of 1 is ad

he response level of this unit; if the estimate is outside the r
or a given sensory unit, in the opposite direction for exam
othing is added to the response level of this unit. This is

or each frame of the sequence, so that sensory unit respon
ls represent the combined response to all frames of the
equence. Sensory unit responses were then length norm
o restrict input to the range [0,1]:

i = Ri((R1
2 + R2

2 + R3
2 + · · · + R48

2)
−0.5

) (1)

he average normalised response of sensory units to tail-
nd wind-blown plants in the training set is presented inFig. 1;
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in the range [0,1]:

Y = (1 + exp−a)
−1

(2)

wherea is the sum of weighted inputs plus the unit’s bias.

1.1.3. Network training
We supervised training by giving the network a target out-

put for all training vectors: 0.8 for tail-flicks and 0.2 for plant

sequences. As the response from the output unit is constrained
in the range [0,1], a target lower than the maximum allows for
the detection of ‘super-normal’ tail-flick sequences that exceed
those upon which the networks were trained. The gradient
descent back-propagation algorithm (Werbos, 1974; Rumelhart
et al., 1986) was used to train the networks. Briefly, network error
(i.e., the difference between the target and the output produced
by the network) is a function of the weights connecting network
units and so adjustments should be made so as to minimise this
error function. Weight changes are made in an iterative manner
whereby the error is passed backwards through the network so
that the relative contribution of a given weight to the overall error
can be determined and small changes to the weight can be per-
formed. New weights are selected in the direction of the steepest
gradient (or slope) of the error function, until it reaches a mini-
mum. We varied both the number of units in the second hidden
layer (2, 7, 13 and 18) and the duration of training, measured in
epochs (i.e., the number of times the input set is presented to the
network: 103 × 1, 5, 10, 20, 50 and 100 epochs). The factorial
combination of hidden layer unit size (four levels) and training
duration (six levels) resulted in a total of 24 networks.

1.1.4. Analysis of network performance
The performance of each of the 24 networks was examined

first by presenting the training set to the trained networks.
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ig. 2. Schematic representation of the neural network models used
riminate the tail-flick signal from plant movement. In all models, dashed
epresent fixed weights not modified during training. (a) TheStatic Input model
as a feed-forward network with two hidden layers and an output layer.
ere 48 inputs to the network representing different velocities summed

ime. Inputs were separated according to their relative speed preference
ng in three input layers of 16 elements each (i.e., 16 preferred directions)
nput layer was connected to a hidden layer of four units via fixed connec
hat were not updated during training. This pre-processing reduced dir
references from 16 to 4 units. These units were connected fully to a s
idden layer, where the number of units varied (n = 2, 7, 13 or 18). These hidd

ayer units were, in turn, all connected to a single unit in an output layer.
ections between the first and second hidden layers, and from the second

ayer to the output layer were subject to learning. The activity level of hi
nits in the second hidden layer and the output layer unit were defined
igmoid transfer function; no transfer function was used in the first hidden
raining was achieved using the gradient descent back-propagation algo
b) TheDynamic Input model also comprised a feed-forward network with t
idden layers and an output layer. The input layer (F0) comprising 48 se
nit responses byN-frames, separated into three speed classes, were col

nto four general directions of movement and length normalised in the first h
ayer (F1). The output from F1 was passed to the second hidden layer (F2)
o-1 basis after being passed through a filter that prevented low levels of a
less than the thresholdf) from moving to the second hidden layer. The four u
er speed class in the second hidden layer were linked to the output layer u
ia weighted connections, which were the only connections modified by tra
he activity of F2 and F3 units is described fully in the text. (c) TheFeedback
odel was a recurrent network using estimates for speed over time as the
he input layer is connected to the hidden layer, which is then connected
utput layer. However, in order to represent time and to provide the networ

form of memory, the hidden layer units are also connected to a context layer,
hich stores the activity levels of each unit in the hidden layer. This is achieved
sing connection weights of 1, which are not modified during training. The con-

ext layer is connected back to the hidden layer; these weights are updated during
raining. Hidden layer units therefore integrated current input (input layer) as
ell as activity from the previous time step (context layer). The sigmoid transfer

unction defined the response probabilities of hidden units and the output unit.
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This was followed by presentation of the test set to assess the
networks’ ability to generalise to unseen exemplars. In both
cases, the response of the network was determined by the output
from the single unit in the output layer. Network responses to
tail-flick and plant sequences were compared individually using
t-tests, separately for the training and test sets. We also assessed
performance by converting network output to a binary response
indicating whether a tail-flick was present in the input sequence.
Network output was transformed from a continuous score in the
range [0,1] to a score of 1 if it exceeded a given threshold; oth-
erwise it was set to 0. Reducing network responses in this way
enabled us to perform signal detection analysis on the networks’
performance (Swets, 1961). We then shifted the threshold for
detection between 0 and 1 (increments of 0.1) whereby the
change in correct decisions and false alarms defined a receiver
operating characteristic (ROC) curve for each network.

To conclude this approach to modelling recognition, we con-
sidered which, if any, characteristics of the test set predicted
network responses. For this purpose, we chose the network that
showed the greatest sensitivity to tail-flicks, as defined by the
ROC curve (i.e., the network that maximised the hit rate, while
minimising the number of false alarms) and performed stepwise
regression of network output against sequence duration, as well
as average and maximum measures for speed and acceleration.
All calculations were made according to procedures outlined in
Peters et al. (2002).
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Fig. 3. Sensory unit response over time for representative (a) tail-flick and (b)
plant sequences presented to the Dynamic Input model. Units are presented from
upward movement then to the right (R), down and left (L).

this, we draw on the fact that tail-flicks are rare relative to the
motion of wind-blown plants so we adjusted the frequency of
plant sequences to reflect the difference in probability of the two
classes of visual motion events. This was achieved by increasing
the number of plant sequences for a given duration to generate
input data sets that varied in the number of tail-flicks relative to
plant sequences (signal-to-noise ratios of 1:10, 1:20 and 1:100).

1.2.2. Network architecture
The architecture of the Dynamic Input model is depicted in

Fig. 2b; it comprises an input layer, two hidden layers and an
output layer. The model processes each speed class from the
input layer separately. Within each speed class, the raw sensory
unit responses in the input layer (F0) were first collapsed into
four general directions of movement and length normalised. The
.2. Dynamic Input model

.2.1. Network input
The second model differed from the first in that it conside

hanges in sensory unit response over time. Calculation o
ory unit responses to the velocity field were identical to
escribed for the Static Input model with one important dif
nce: responses were stored separately for each frame
equence rather than summed over time. The input now
rised 48 sensory units (16 directions× 3 speeds) byN-frames

he number (N) of frames varied between sequences. An il
ration of the type of input presented to the network is show
ig. 3. We used a different training strategy than for the S

nput model. First, as the temporal properties of the signal
ow preserved, and because jacky lizard tail-flicks vary
iderably in terms of signal duration (Peters and Ord, 2003),
subset of the tail-flick sequences was selected (range:

rames; mean: 71 frames; median: 58 frames). Plant sequ
ere then chosen to match as close as possible the distri
f tail-flick sequence length (range: 15–235 frames; mea

rames; median: 72 frames). Second, as described below, th
ess by which the network learns is different to that present
he previous model. Connections between units are strengt
hen both are ‘firing’, and importantly, are weakened when
utput unit does not ‘fire’ (i.e., when the network is told t

he input sequence features wind-blown plants). Consequ
he network learns that certain units are not associated with
icks. We therefore wished to examine how much experi
ith wind-blown plants is needed before the network ef

ively learns to ignore certain unit activity. In order to implem
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output from the first hidden layer (F1) was passed to the second
hidden layer (F2) on a 1-to-1 basis after being passed through a
filter that prevented low levels of activity (less than the threshold
f) from moving to the second hidden layer. The four units per
speed class in the second hidden layer were linked to the output
layer unit (F3) via weighted connections, which were the only
connections modified by training.

The inputs to the network were the raw sensory unit responses
over time (Fig. 3). The first hidden layer (F1) performed pre-
processing as described above. The activity of F2 units was
modelled over time according to the following differential equa-
tion:

dxi

dt
= −Axi + msi (3)

wherebysi is the activity of theith unit in the F1 layer,xi the
activity of theith unit in the F2 layer,A the rate of decay of unit
activity andm is a multiplier (10) that scales the response of F2
units to activity in F1 units.

The activity of the F3 output unit (denotedy) was updated
through a process of interactive activation. The first step was to
calculate the net input to the unit:

I =
(∑

i=1:N
(xizi)

)
+ 100T (4)

wherezi is the weight from theith unit in F2 to F3 andT defined
t nd 0
r less
o as
d

w that
F ente
b ayed
t

id-
d ring
t ntial
e

I
( t
i ard
w
i
o .
T and
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unit in the absence of F3 unit activity results in the weakening
of the connection between these units (i.e., the network learns
that activity in this F2 unit does not signal the presence of a
conspecific). There is no change in the weight when the F2 unit
is inactive (i.e., whenxi = 0). Learning rules with such properties
have been referred to as non-Hebbian or gated steepest descent
(Grossberg, 1976).

The set of differential Eqs.(3), (5)and(6)were solved numer-
ically using Euler’s method with a step size of 0.01. A process
of empirical adjustment of parameters determined that setting
all parameters (f, A, B andλ) at 0.05 resulted in satisfactory
learning.

1.2.3. Network training and performance assessment
We did not vary the size of hidden layers in this model or the

training duration, and as such created only one version of this
model. During training, each input sequence was presented once
in a random order. The network modified connection weights
between the 12 units in F2 (4 per speed class) and the output
unit in F3. Discrimination performance was examined as in the
Static Input model.

1.3. The Feedback model

1.3.1. Network input
Input to the Feedback model consisted of a single estimate of
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espectively);T was set to 0 during network testing, regard
f input type. The change in activity for the output unit w
efined by:

dy

dt
=

{
−By + I(1 − y), if (I ≥ 0)

−By + Iy, if (I < 0)
(5)

hereB is the rate of decay of the output unit. This ensured
3 unit activity decreased when plant sequences were pres
ut increased when a tail-flick was presented; activity dec
oward zero in the absence of input.

The connection weights (zi) between units in the second h
en layer (F2) and the output unit (F3) were modified du

raining. Weight changes were determined by the differe
quation:

dzi

dt
= λ(1 − zi)xj(y − zi) (6)

n this equation, learning inzi is stabilised (i.e., dzi/dt = 0) when
y–zi) = 0. That is, the weightzi tracks the value ofy: the weigh
ncreases when the output unit fires and decreases (tow
hen the output unit is not firing. The inclusion ofxi in Eq. (6)

mplies that learning in the weight from theith F2 unit to the
utput unit can only take place when theith F2 unit is itself active
he termλ is a parameter that controls the rate of learning,

he term (1− zi) ensures that weights do not exceed an u
ound of 1. Thus, the simultaneous activation of an F2 uni

he F3 unit results in the strengthening of the connection bet
hese units (i.e., the network learns that activity in this F2
an signal the presence of a conspecific), as in Hebbian lea
owever, unlike standard Hebbian learning, activation of a
,

d,

0)

n

g.

peed per frame for 100 frames (4 s). Recall that for any g
rame of the image sequence there will be many estimat
elocity, according to the amount of movement detected in
cene by the motion analysis algorithm (seePeters et al., 2002).
n the previous two models we retained both componen
elocity (i.e., direction and speed), however, here we retain
ector magnitude, or speed. This value is determined for
stimate using Pythagoras’ Theorem. A single estimate for s

or each frame was then calculated by averaging across
alues; an illustration of the type of input used is presente
ig. 4. From the subset of tail-flick sequences completed w
00 frames, we randomly selected 30 to be used for trai
0 sequences of wind-blown plant movement were also
omly selected. The test set comprised 55 tail-flick seque
nd 34 plant sequences not presented during training. D
oftware constraints, it was necessary to standardise the du
f input sequences. Consequently, we zero-padded the tai
equences that were less than 100 frames in duration so th
ovement started at different times within each sequence b

nished at frame 100.

.3.2. Network architecture
The Feedback model was a recurrent network (Elman, 1990)

onsisting of four layers: the input layer, two hidden layers
f which is a context layer), and an output layer (seeFig. 2c).
he input layer is connected to the hidden layer, which is
onnected to the output layer. However, in order to repre
ime and to provide the network with a form of memory,
idden layer units are also connected to a context layer, w
tores the activity levels of each unit in the hidden layer. Th
chieved using connection weights of 1, which are not mod
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Fig. 4. Representative speed-time profiles for tail-flicks (�) and wind-blown plant movement (©) presented to the Feedback model.

during training. The context layer is connected back to the
hidden layer; these weights are updated during training. Hidden
layer units therefore integrated current input (input layer) as
well as activity from the previous time step (context layer).
The network produces an output at each time-step (equal to
the duration of the input), however the final output value was
considered to be the networks’ response to the input sequence.
Response properties of all hidden units and the output unit were
defined by the sigmoid transfer function(2).

1.3.3. Network training
The input sequences were presented randomly during train-

ing. The network was trained using the gradient descent back-
propagation algorithm, using the sum of squares error term.
Weights were only updated after all input sequences had been
presented. We trained the network to a response of 1 for tail-
flicks and 0 for plant sequences. A total of 15 networks were
constructed varying in hidden layer size (1, 2 and 5 units) and
training duration (25, 50, 100, 300 and 500 epochs).

1.3.4. Analysis of network performance
The performance of each of the 15 networks was examined by

presenting the training set to the trained network. This was fol-
lowed by presentation of the test set to the network. The response
of the network was determined by the final output from the single
u ses
t tely
f ide
t of its
r sam
m

2

2

n-
i ted i
F inat
b ;

d.f. = 1; p < 0.0001 for each). The response of the networks to
the previously unseen test set is presented inFig. 5b. While
performance was reduced relative to the training set, the net-
works were still capable of discriminating reliably between the
tail-flick and plant movement sequences (t = 4.8–14.6; d.f. = 1;
p < 0.0001 for each). The network responses to both the training
and test sets suggest moderate improvement with longer training
durations, while the effect of increasing the number of hidden
layer units was most notable when increased from 2 to 7; further
increases in the number of hidden layer units did not improve
performance.

Shifting the criterion for tail-flick recognition between 0 and
1 assessed the signal detection performance of each network.
The change in correct decisions and false alarms is defined by
the ROC curve for each network. Representative ROC curves
from the 24 networks are presented inFig. 6. Each plot depicts
the best (closed circles) and worst (open circles) performing net-
works at each hidden layer size, and showed that all networks
performed better than chance (diagonal line). Furthermore, the
distance of the ROC curve from chance level performance is pos-
itively related to its ability to discriminate signals from noise,
and consequently, the best performing network can be regarded
as the one that maximised this separation. In the present anal-
ysis, the best network featured seven hidden layer units and a
training duration of 50,000 epochs (Fig. 6b closed circles) and
was subsequently used in regression analysis. Of the variables
t st set,
o ficant
p ,
a

2

odel
t
r ration
i m-
i ere
c
d ated
nit in the output layer.t-Tests were used to compare respon
o the two types of visual motion for a given network, separa
or the training and test sets. ROC curves were generated to
ify the best performing network, and stepwise regressions
esponse against predictor variables were conducted in the
anner as for the other models.

. Results

.1. Static Input model

Mean network response (±S.D.) to the training set by trai
ng duration and size of the second hidden layer is presen
ig. 5a. As can be seen, the networks were able to discrim
etween tail-flick and plant movement sequences (t = 9.3–31.6
n-

e

n
e

hat were used to summarise the input sequences of the te
nly average and maximum speed were found to be signi
redictors of network response (F(2,78) = 93.391,p < 0.0001
djustedR2 = 0.698;Table 1).

.2. Dynamic Input model

The mean (+S.D.) response of the Dynamic Input m
o sequences after training is presented inFig. 7, and the
elationship between network response and sequence du
s presented inFig. 8. The network was unable to discri
nate tail-flicks from the background noise when these w
ommon during training (1:10 signal-to-noise ratio:t = 0.54;
.f. = 92; p = 0.589), and the response was highly correl
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Fig. 5. Mean (±S.D.) response of Static Input model networks to the (a) training and (b) test sets by training duration for tail-flicks (�) and wind-blown plant movement
(©). Separate plots are presented for different numbers of units in the second hidden layer (2, 7, 13 and 18). All networks were successful at discriminating the two
classes of visual motion in both training and test sets (t-tests,p < 0.05).

with sequence duration (tail-flick:R2 = 0.82,p < 0.001; plants:
R2 = 0.91, p < 0.001; Fig. 8a). Discrimination performance
started to improve when the signal-to-noise ratio was reduced
to 1:20t = 2.23; d.f. = 92;p = 0.028); however response was still
highly correlated with sequence duration (tail-flick:R2 = 0.72,
p < 0.001; plants:R2 = 0.95,p < 0.001;Fig. 8b). Further reduc-
tion in the signal-to-noise ratio (1:100) during training sub-
stantially improved discrimination (Fig. 7; t = 5.02; d.f. = 92;

p < 0.0001). This is apparent primarily in the very small response
of the network to plant sequences, which was now unrelated to
sequence duration (R2 = 0.08;Fig. 8c). The response to tail-flicks
remained sensitive to sequence duration (R2 = 0.71,p < 0.001;
Fig. 8c). A stepwise regression indicated that sequence dura-
tion and maximum speed explained approximately half of the
total variance in network response (F(2,78) = 41.59,p = 0.000,
adjustedR2 = 0.504;Table 1).
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Fig. 6. Receiver operating characteristic (ROC) curves for the best (�) and worst (©) performing networks of the Static Input model for hidden layer sizes of (a) 2,
(b) 7, (c) 13 and (d) 18 units. The worst performing network for each hidden layer size was trained for 1× 103 epochs. The best performing networks for (a, c and
d) were trained for 10× 103 epochs, while (b) was trained for 50× 103 epochs. The diagonal straight line represents chance performance.

2.3. The Feedback model

Mean network response (±S.D.) to the training set by training
duration and hidden layer size is presented inFig. 9a. There was a
clear effect of hidden layer size as well as training duration. Net-
works with either 1 or 2 units in the hidden layer and a training

Fig. 7. Mean (+S.D.) network response to tail-flicks (�) and wind-blown plant
movement (�) by the signal-to-noise ratio during training for the Dynamic Input
model. (*) A significant difference between network response to the tail-flicks
and plant movement (p < 0.05).

duration of less than 500 failed to discriminate input sequences
(t = 0.588–1.272; d.f. = 58;p > 0.10); the longer training time of
500 epochs resulted in better performance (t = 5.563; d.f. = 58;
p < 0.001 andt = 17.70; d.f. = 58;p < 0.0001 for 1 and 2 hidden
units, respectively). Discrimination improved with five hidden
units, and when coupled with longer training durations (300 or
500 epochs) performance was very high (i.e., very low vari-
ance in network response) (t = 0.632; d.f. = 58;p > 0.1 following
training for 25 epochs, whilet = 7.4–620.0; d.f. = 58;p < 0.0001
for durations of 50, 100, 300 and 500 epochs). The response
of the networks to the previously unseen test set mirrored that
of the training set (Fig. 9b); networks with five hidden layer
units and longer training performed best. Networks with one or
two hidden layer units and less than 500 epochs during train-
ing failed to discriminate the input patterns (t = 0.658–1.333;
d.f. = 87; p > 0.10). Longer training improved performance for
one (t = 6.024; d.f. = 87;p < 0.001) and two (t = 15.939; d.f. = 87;
p < 0.001) hidden units. The network with a short (25 epochs)
training duration and five hidden units was unable to discrim-
inate the input patterns (t = 0.668; d.f. = 87;p > 0.10), while
longer training durations (50, 100, 300 and 500 epochs) resulted
in significant discrimination performance (t = 8.737–197.241;
d.f. = 87;p < 0.0001). ROC curves for networks with five hidden
layer units are presented inFig. 10. Networks with long train-
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Table 1
Results of stepwise regression of network response and motion parameters for each of the three neural network models

Variables Un-standardised coefficients Standardised coefficients

B S.E. Beta t p

Static Input model
Constant 0.023 0.037 −0.614 0.541
Average speed 0.216 0.049 0.573 4.372 0.000
Maximum speed 0.104 0.047 0.290 2.209 0.030

Dynamic Input model
Constant −0.233 0.037 −6.315 0.000
Sequence duration 0.001 0.000 0.402 5.063 0.000
Maximum speed 0.143 0.021 0.550 6.929 0.000

Feedback model
Constant 0.014 0.055 0.262 0.793
Average speed 0.569 0.044 0.784 12.961 0.000
Maximum speed −0.193 0.027 −0.415 −7.197 0.000
Maximum acceleration 0.199 0.041 0.318 4.901 0.000

Excluded variables Standardised coefficients

Beta In t p

Static Input model
Sequence duration −0.041 −0.439 0.662
Average acceleration 0.018 0.152 0.880
Maximum acceleration 0.024 0.272 0.786

Dynamic Input model
Average speed 0.056 0.367 0.714
Average acceleration −0.032 −0.253 0.801
Maximum acceleration −0.237 −1.815 0.073

Feedback model
Average acceleration (sequence duration not entered) −0.031 −0.446 0.656

ing times (300 and 500 epochs) resulted in near perfect signal
detection performance, while the network with the shortest train-
ing period (25 epochs) actually performed worse than chance
(open circles). Regression analysis of network (five hidden units,
trained for 300 epochs) response against predictor variables
revealed that average and maximum speed, as well as maximum
acceleration were significant predictors of network response
(F(3,194) = 130.152,p < 0.0001, adjustedR2 = 0.663;Table 1).

3. Discussion

Neural network methodology has proven a useful tool for
understanding signal design and evolution (e.g.,Enquist and
Arak, 1993; Johnstone, 1994; Ryan et al., 2001). To date, this
approach has been mostly applied to artificial input (Enquist
and Arak, 1993) and bioacoustics (Phelps and Ryan, 1998;
Deecke et al., 1999). The present paper extends the application
of neural networks to the discrimination of a movement-based
animal signal from background plant movement, using both
static and time-varying input patterns. We show that networks
of varying design can be trained to distinguish input derived
from two different classes of visual motion. It is important
to emphasise that our goal was to examine the feasibility of
using neural networks as a statistical tool for understanding
behaviour, rather than to investigate the neural mechanisms
i

Three models were presented that varied in the input struc-
ture, network architecture and the manner in which they
‘learned’. The Static Input model was designed to capture the
structure of visual motion input in terms of direction and speed
(i.e., velocity), while ignoring temporal information by collaps-
ing across the time domain (Fig. 1). In contrast, the other two
models incorporated temporal information. The Dynamic Input
model considered estimates for velocity over time (Fig. 3), while
the Feedback model was presented with sequential estimates for
velocity magnitude (i.e., speed;Fig. 3). The first two models
comprised a feed-forward architecture with two hidden layers
and an output layer (Fig. 2a and b), whereas a recurrent network
was used for the Feedback model (Fig. 2c), which is designed
to capture temporal variation by means of a context layer that
‘remembered’ its previous state. All models were supervised
during training, meaning that correct outputs were provided to
the network. In the case of the Static Input and Feedback mod-
els, connection weights were adjusted to better match its output
to the target, using the back-propagation learning algorithm. In
contrast, in the Dynamic Input model, error was not propagated
backward through the network. Weights were adjusted during
training when the connected units (from different layers) were
both ‘firing’, according to an associative (gated steepest descent)
learning rule.

Several versions of the Static Input and Feedback models
were created with systematic variation in hidden layer size and
t as
nvolved in discriminating types of visual motion.
 raining duration (see Section1). Signal detection analysis w
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Fig. 8. Response of Dynamic Input model networks to tail-flicks (�) and wind-
blown plant movement (©) as a function of sequence duration. Plots are for
different signal-to-noise ratios of (a) 1:10, (b) 1:20 and (c) 1:100.

then used to determine the relative performance of each networ
Comparisons between ROC curves (Figs. 6 and 10) allowed for
selection of a single optimal network for each model. All models
correctly classified the two different classes of visual motion
used during training, and generalised successfully to previousl
unseen input (Figs. 5, 7 and 9). Regression analyses were then
used to examine the relationship between network response an
average and maximum values for speed and acceleration, as w

as sequence duration (Table 1). Maximum speed was shown to be
a significant predictor of network response for all three models,
while average speed was significant for the Static Input and
Feedback models, and maximum acceleration for the Feedback
model only. Sequence duration only predicted network response
for the Dynamic Input model. It is not surprising that sequence
duration did not affect the other two models, as the nature of the
input to these models would likely have masked any effect of this
variable. The sensory unit input to the Static Input model was
calculated frame-by-frame and then summed across time. As a
consequence, the same input profile could have been derived
from a short sequence with lots of activity, or a long sequence
with intermittent activity. Similarly, the input to the Feedback
model was standardised to 100 frames (4 s), by zero padding of
sequences that were shorter.

These results suggest that the Static Input and Feedback
models used structural differences in visual motion (i.e., veloc-
ity) as the basis for learning the discrimination between sig-
nal and noise during training. Furthermore, discrimination
could be performed based on calculation of velocity magni-
tude (speed) alone. This is consistent with behavioural findings
in other lizards (Anolis auratus; reviewed inFleishman, 1992).
Fleishman (1986)showed that response probability to artificial
lures was greatest when the stimulus had high velocity and accel-
eration values; a characteristic of the initial portion of their visual
display (Fleishman, 1988). In circumstances where the goal is
t n, it
i atic
I spic-
u
a e
d to a
c ence
( ur
o istics
d
s tro-
d odel
s sig-
n back
s tion
v at
t sting
t tion,
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c viour
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a real
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uan-
t es of
r aria-
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t com-
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i ond
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ell

o classify motor patterns and other types of visual motio
s likely that relatively simple networks, like those of the St
nput and Feedback models, will be suitable. However, con
ousness is not sufficient to fully explain signal design (Peters
nd Evans, 2003a). The jacky lizard tail-flick is the first of fiv
istinct motor patterns, which are performed in response
onspecific intruder and expressed in an obligatory sequ
Peters and Ord, 2003). We have shown previously that fo
ut of the five motor patterns have structural character
istinct from background noise (Peters and Evans, 2003a), so
tructure alone cannot account for the tail-flick being the in
uctory component. Predictions from the Dynamic Input m
uggested that duration is an important factor determining
al efficacy. This prediction was tested in a recent play
tudy investigating the relative importance of several mo
ariables (Peters and Evans, 2003b). Results demonstrated th
ail-flick efficacy does indeed depend upon duration, sugge
hat short displays may be ineffective for attracting atten
egardless of intensity. This close match between the res
haracteristics of the Dynamic Input model and the beha
f these lizards suggests that this architecture might be the
ppropriate for predicting the effect of signal variation on
eceivers.

Neural networks can hence be used in combination with q
itative analyses of signal structure and experimental analys
eceiver responses. By identifying patterns of structural v
ion in visual motion input, these models help to isolate
ubset of variables that are likely to be most important, so
hese can be manipulated experimentally. This approach
ares favourably with the alternative of making unguide

ntuitive choices, which are perhaps less likely to corresp
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Fig. 9. Mean (±S.D.) response of Feedback model networks to the (a) training and (b) test sets by training duration (epochs) for tail-flicks (�) and wind-blown
plant movement (©). Separate plots are presented for different numbers of hidden units (1, 3 and 5). (*) A significant difference between network response to the
tail-flicks and plant movement (p < 0.05).

with the parameters that are important to the lizards. In our
current research, we utilize 3D digital animations to explore
signal recognition in the jacky lizard (Peters and Evans, 2003b),
which allows us to construct any number of motor patterns in a
mathematically-precise manner. Trained networks will be used

F unit
a t
s

to explore recognition of a large number of synthetic sequences,
so that we can select a subset of these for presentation to live
lizards using digital video playback. The general approach we
are advocating here is not limited to movement-based signals;
a similar strategy has already proven successful in predicting
response biases in the acoustic domain (Phelps and Ryan, 1998).

In conclusion, the present analysis has shown that the study
of movement-based animal signals has the potential to benefit
from the application of neural network methodology. Networks
from each of the three models were highly successful at discrim-
inating the signal from noise. However, we expect that neural
networks will be particularly useful for identifying more subtle
differences in structure than those we have presented, such as
in comparisons between individuals performing the same motor
pattern. Furthermore, the performance of the Dynamic Input
model is encouraging because it predicted behavioural findings
that would not be expected based on analyses of structure alone.
Further development of this approach to studying signal design
will help to direct future research into the evolution of this class
of animal signals.
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Ord for comments on earlier versions of this paper. This work

uncil

ig. 10. ROC curves for Feedback model networks with five hidden layer
nd training durations of: 25 (©), 100 (�), 300 (�) and 500 (�) epochs (no
hown: 50 epochs). The diagonal line reflects chance performance.
s
was funded by a grant from the Australian Research Co
(DP0345643).



64 R.A. Peters, C.J. Davis / Behavioural Processes 72 (2006) 52–64

References

Basolo, A.L., 1990. Female preference predates the evolution of the sword
in swordtail fish. Science 250, 208–210.

Bateson, P., Horn, A.G., 1994. Imprinting and recognition memory: a neural
net model. Anim. Behav. 48, 695–715.

Borst, A., Haag, J., 2002. Neural networks in the cockpit of the fly. J. Comp.
Physiol. A Sens. Neural Behav. Physiol. 188, 419–437.

Deecke, V.B., Ford, J.K.B., Spong, P., 1999. Quantifying complex patterns
of bioacoustic variation: use of a neural network to compare killer whale
(Orcinus orca) dialects. J. Acoust. Soc. Am. 105, 2499–2507.

Elman, J.L., 1990. Finding structure in time. Cogn. Sci. 14, 179–211.
Endler, J.A., 1990. On the measurement and classification of colour in studies

of animal colour vision. Biol. J. Linnean Soc. 41, 315–352.
Endler, J.A., 1991. Variation in the appearance of guppy color patterns to

guppies and their predators under different visual conditions. Vis. Res.
31, 587–608.

Endler, J.A., 1992. Signals, signal condition and the direction of evolution.
Amer. Nat. 139, S125–S153.

Endler, J.A., Basolo, A.L., 1998. Sensory ecology, receiver biases and sexual
selection. Trends Ecol. Evol. 13, 415–420.

Enquist, M., Arak, A., 1993. Selection by exaggerated male traits by female
aesthetic senses. Nature 361, 448–449.

Enquist, M., Ghirlanda, S., 2005. Neural Networks & Animal Behavior.
Princeton University Press, Princeton, NJ, p. 253.

Fleishman, L.J., 1986. Motion detection in the presence or absence of back-
ground motion in anAnolis lizard. J. Comp. Physiol. A Sens. Neural
Behav. Physiol. 159, 711–720.

Fleishman, L.J., 1988. Sensory influences on physical design of a visual
display. Anim. Behav. 36, 1420–1424.

F env
and

G ls of

G oding
Biol

G ution

H ntice

H iol.

H nica-
lin.

J produ

Krakauer, D.C., Johnstone, R.A., 1995. The evolution of exploitation and hon-
esty in animal communication: a model using artificial neural networks.
Philos. Trans. R. Soc. Lond. B 348, 355–361.

Pagel, M., 1993. The design of animal signals. Nature 361, 18–20.
Peters, R.A., 2003. Design of movement-based animal signals: insights from

an Australian lizard, Amphibolurus muricatus. Ph.D. Thesis. Macquarie
University, Sydney, Australia.

Peters, R.A., Clifford, C.W.G., Evans, C.S., 2002. Measuring the structure of
dynamic visual signals. Anim. Behav. 64, 131–146.

Peters, R.A., Evans, C.S., 2003a. Design of the Jacky dragon visual display:
signal and noise characteristics in a complex moving environment. J.
Comp. Physiol. A Sens. Neural Behav. Physiol. 189, 447–459.

Peters, R.A., Evans, C.S., 2003b. Introductory tail-flick of the Jacky dragon
visual display: signal efficacy depends upon duration. J. Exp. Biol. 206,
4293–4307.

Peters, R.A., Ord, T.J., 2003. Display response of the Jacky dragon,Amphi-
bolurus muricatus (Lacertilia: Agamidae), to intruders: a semi-Markovian
process. Aust. Ecol. 28, 499–506.

Phelps, S.M., Ryan, M.J., 1998. Neural networks predict response biases of
female tungara frogs. Proc. R. S. Lond. B 265, 279–285.

Phelps, S.M., Ryan, M.J., 2000. History influences signal recognition: neural
network models of t́ungara frogs. Proc. R. Soc. Lond. B Biol. Sci. 267,
1633–1639.

Phelps, S.M., Ryan, M.J., Rand, A.S., 2001. Vestigial preference functions
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