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Abstract Visual systems are typically selective in their
response to movement. This attribute facilitates the
identification of functionally important motion events.
Here we show that the complex push-up display pro-
duced by male Jacky dragons (Amphibolurus muricatus)
is likely to have been shaped by an interaction between
typical signalling conditions and the sensory properties
of receivers. We use novel techniques to define the
structure of the signal and of a range of typical moving
backgrounds in terms of direction, speed, acceleration
and sweep area. Results allow us to estimate the relative
conspicuousness of each motor pattern in the stereo-
typed sequence of which displays are composed. The
introductory tail-flick sweeps a large region of the visual
field, is sustained for much longer than other compo-
nents, and has velocity characteristics that ensure it will
not be filtered in the same way as wind-blown vegeta-
tion. These findings are consistent with the idea that the
tail-flick has an alerting function. Quantitative analyses
of movement-based signals can hence provide insights
into sensory processes, which should facilitate identifi-
cation of the selective forces responsible for structure.
Results will complement the detailed models now
available to account for the design of static visual sig-
nals.

Keywords Lizards Æ Movement-based signals Æ Visual
communication Æ Visual ecology

Introduction

Sensitivity to visual motion helps animals to select
functionally-important stimuli for further analysis

(Nakayama and Loomis 1974). For example, recogni-
tion of prey items is much easier when sudden movement
compromises crypsis that depends upon appearance
(Regan and Beverley 1984), and selective processing of
approaching objects facilitates detection of predators
(Schiff et al. 1962). However, only a small proportion of
environmental movement is relevant. Filtering mecha-
nisms ensure that the limited capacity of the visual sys-
tem is not overwhelmed by other information.

Considerable progress has been made in explaining
the design of static signals. The strategy in such studies
has been to combine the objective measurement of
structure with knowledge of both the light environment
in which the animal is seen, and of sensory processes
(Endler 1990, 1992). Selectivity in the response of visual
systems to motion is likely to have shaped the evolution
of movement-based animal signals in an analogous
fashion. In particular, the sensory properties of receivers
will define the optimal design for conspicuousness
(Guilford and Dawkins 1991; Endler 1992). To convey
information effectively, animals must maximise the
chance of being detected. This can be achieved by sig-
nalling at particular times of the day, when environ-
mental conditions enhance signal intensity (Endler
1991), when receivers’ sensory systems are most sensitive
(Aho et al. 1988), or when the signals of other species are
absent (Greenfield 1988). Each of these strategies effec-
tively increases the signal-to-noise ratio (Endler 1992).
The likelihood of detection is also increased if signals
contrast with the background against which they are
typically performed (Endler 1991; Fleishman 1992). The
distinctive colour of some static visual signals facilitates
rapid recognition by conspecifics (Bernard and Rem-
ington 1991). Similarly, movement-based signals are
most effective when they stimulate the visual system in a
way that irrelevant visual motion does not (Fleishman
1992).

Direction can be calculated from two relatively
imprecise position measurements and is thought to be
the first motion variable neurally coded in visual systems
(Barlow et al. 1964). The directional selectivity of
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individual neurons provides a basic mechanism, which is
typically supplemented by integration over a larger
population (Grzywacz et al. 1994). Processing of object
speed is probably based upon the spatial and temporal
properties of directionally selective neuron activity (Si-
moncelli and Heeger 1998). Direction and speed are
fundamental parameters from which other important
motion variables (e.g. acceleration) can be derived.

Previous efforts to characterize movement-based liz-
ard signals have used display action patterns to compare
the properties of simple movements, such as the head
nod (e.g. Martins et al. 1998). These analyses identify
differences between display profiles, but only allow weak
inferences about the relative conspicuousness of signals.
Pioneering work by Fleishman demonstrated the value
of a more quantitative approach; comparisons using
Fourier analysis show that the displays of Anolis auratus
have more power at high frequencies than background
vegetation movement (reviewed in Fleishman 1992).
Similarly, Zeil and Zanker (1997) described the motion
characteristics of claw waving in Fiddler crabs (genus
Uca) using two-dimensional motion detectors to capture
the direction and strength of signals in a range of spatio-
temporal frequency bands. In a recent paper, we have
developed Zeil and Zanker’s (1997) idea of using com-
putational motion analysis algorithms to measure the
structure of movement-based animal signals (Peters
et al. 2002). We used a motion analysis algorithm that
estimates velocity based on local changes in image
intensity, allowing us to track the direction and speed of
movement on a fine temporal scale.

Most previous work on lizard visual signals has fo-
cused on displays that are composed of relatively simple,
repeated motor patterns. In contrast, the push-up
(aggressive) display of the Jacky dragon involves five
distinct motor patterns delivered in rapid succession,
and subsets of this sequence may be repeated within a
display bout. The temporal order of components can be
described using Markov chain analysis (e.g. Hailman
et al. 1985, 1987), which allows comparisons of gross
structure (Peters and Ord 2003). This is a useful first
step, but we are particularly interested in the details of
signal design. Here we examine the properties of indi-
vidual display motor patterns, focusing on the degree to
which they are each conspicuous against a typical
background of wind-blown vegetation.

We used an optic flow algorithm (Peters et al. 2002)
to generate ’velocity signatures’—scatterplots repre-
senting the direction and speed of movement—for each
display component. The shapes of the velocity signatures
were then summarised with standard ellipses, which al-
lowed an initial descriptive analysis comparing the signal
with background movement. Subsequent analyses
sought to specify more precisely how the various se-
quences differed. First, we collapsed across time to
examine direction and speed. Second, direction of
movement was ignored to measure variation in speed
over time. Finally, we concentrated on the spatial loca-
tion of motion, ignoring time, direction and speed.

We build upon earlier work describing visual ecology
in the context of movement-based signals (Zeil and
Zanker 1997; Fleishman 1992). Specifically, our goal
was to explain why the tail-flick is used as the intro-
ductory component to the push-up display and to
identify how constraints imposed by signalling in a
complex visual environment might have contributed to
the design of this motion-based signal. Detailed
description of structural differences between signal
components and wind-blown vegetation effectively de-
fines the task faced by the sensory system and should
hence provide insights about mechanisms of visual
processing in these lizards.

Materials and methods

Apparatus

Video recordings were made using a Canon XL1 digital video
camcorder (optical resolution 625 lines) mounted on a tripod. We
used a shutter speed of 1/250 s, an aperture of F8 and Sony
DVM60EX digital tape (550 lines recorded resolution). The dis-
tance between the camera and the subject was constant. Full details
of the recording setup for lizard displays are provided in Ord et al.
(2002).

Video sequences

Image sequences depicted wind-blown vegetation and the five
components of the Jacky dragon push-up display, which were each
analysed separately (Fig. 1). Sequence duration was measured in
frames at the rate of 25 s)1 (PAL standard). Table 1 presents a
summary of the sequences used in analyses.

Wind-blown vegetation

Five plant species were selected to represent the habitat in which
lizards were originally captured. Species were chosen that typically
form the background for basking Jacky dragons: Acacia longifolia,
Grevillea linearfolia, Kunzea ambigua, Pteridium esculentum and
Xanthorrhea arborea. Video-recording was carried out in the
summer of 2001. We measured wind-speed while filming using a
hand-held anemometer (Dick Smith Model Q1411) and obtained
sequences of each plant species over the range from 0.70 ms)1 to
2.0 ms)1. Analysis of wind-speed data recorded at our field site by
the Australian Bureau of Meteorology reveals that this video
footage sampled plant movement from light to typical wind con-
ditions (Fig. 2).

Push-up display of the Jacky dragon

We used video footage from an archival collection recorded during
a study reported elsewhere (Ord et al. 2002). Each sequence showed
a male on a platform made from rough-sawn timber with a uniform
and static background. Male Jacky dragon displays consist of a
stereotyped series of discrete motor patterns (Fig. 1): introductory
tail-flicks are followed by backward and forward arm-waves, a
push-up and then a body rock (a wave travelling anterior to pos-
terior down the body). Some, or all, of the components may then be
repeated. A total of 53 display sequences from four different male
lizards were used in the following analyses of movement charac-
teristics (Table 1). Transition probabilities between display com-
ponents were calculated from the whole sample.
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Computational motion analysis

Our approach for quantifying movement in animal signals, is de-
scribed in a recent paper (Peters et al. 2002). Briefly, a computa-
tional motion analysis algorithm is used to calculate velocity
estimates by tracking changes in image intensity. The algorithm
assumes a locally constant image structure and calculates the
velocity field from temporal and spatial derivatives of filtered
versions of image intensity (see Fleet and Langley 1995; Fig. A1 in
Peters et al. 2002). Neighbouring locations in natural image se-
quences tend not to be independent. We therefore combine local
measurements of image velocity to obtain a weighted average. This
reduces noise to provide a smoothly varying velocity field, while
maintaining high spatial resolution. Estimates of movement are
calculated over a two-frame window. The spatial distribution of
movement can be presented graphically in ’velocity plots’ to
identify where motion occurs (referred to as optic-flow plots in
Peters et al. 2002). Alternatively, we can ignore relative spatial
location and present a more concise description of the direction

and magnitude of movement in ’velocity signatures’ (Fig. 3a).
There are several options available for further analysis, providing
summary data that quantify some aspect of the differences between
motor patterns. We summarise the general method below, but
refer readers to our previous paper (Peters et al. 2002) for technical
details.

Table 1 Summary of sequences used in analyses

Display component No. of
sequences

Cumulative
frame count

Sequence duration
(frames)

Average Min. Max.

Tail-flick 58 2,966 51 26 231
Tail-flick (uncropped)a 60 3,203 53 6 148
Backward arm-wave 80 791 10 6 13
Forward arm-wave 81 610 7 5 10
Push-up 152 1,359 9 4 13
Body-rock 137 1,339 10 5 18

aSee text for details

Fig. 1 The push-up display of the Jacky dragon is a stereotyped
motor pattern delivered in an obligatory sequence: an introductory
tail-flick is followed by backward and forward arm-waves, and a
push-up. Displays conclude with a body-rock, which is a wave
travelling anterior-posterior down the body. These movements can
be repeated within a display bout, either from the same spatial
location or after a small shift in position and orientation.
Transition probabilities are based on Markov chain analysis of
53 sequences (see text for details)

Fig. 2Distribution of wind-speed measurements during spring (top)
and summer (bottom) for the period 2000–2002. Measurements
were taken every 30 min at a height of 10 m and are presented
separately for 0800–1000 hours (solid circles), 1000–1200 hours
(open circles), 1200–1400 hours (solid squares), 1400–1600 hours
(open squares). We used the Power-Law (Arya 2001) to estimate
wind-speed at the height of our measurements. Recordings taken
on overcast days (<2 h sunshine) were excluded. The shaded region
indicates the range of wind-speeds for the wind-blown plant
sequences in our analyses (source: Australian Bureau of Meteorol-
ogy)
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General method

Raw footage was transferred digitally from the camcorder to a
DraCo non-linear video editing workstation (MS MacroSystem
Computer), using an IEEE 1394 ’firewire’ interface. MovieShop
v5.2 software was then used to convert the video clips to sequences
of still images, at a rate of 25 s)1. Graphic Converter v3.9.1 soft-
ware was used to convert images to 8-bit greyscale. To reduce
computation time, images were then downsampled to 144·176
pixels.

The motion computation algorithm was implemented using
Matlab v5.2.1 for Macintosh and is available from R.A.P. The
algorithm calculates estimates of motion for each image point over
a two-frame window and represents velocity as separate x- and
y-component vectors. Vector addition of these components

Fig. 3 a The distribution of local velocity estimates generated by
the computational motion analysis algorithm can be presented in a
velocity signature (left panel) and further summarised by a standard
ellipse (right panel). The Cartesian (x, y) form of a standard ellipse
can be converted into the F* shape function of Zahn and Roskies
(1972). This involves interpolation of coordinate pairs, reducing
from 197 to 50 in our analysis. b We then calculate the net angular
deviation between adjacent chords and subtract the expected
angular deviation of a circle with the same radius. The first
eigenshape of G. linearfolia is presented in both Cartesian (c) and
F* forms (d). The covariance between individual shape functions
and eigenshapes indicates the degree of similarity between outlines.
Examples of individual shapes that exhibit high positive, zero, and
high negative covariance with the first eigenshape for G. linearfolia
are shown
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determines the direction and magnitude of velocity at a given image
point.

Defining differences between image sequences

In Peters et al. (2002), we presented three approaches for summa-
rising velocity information: calculation of a standard ellipse, re-
sponse properties of a population of artificially-tuned sensory units,
and derivation of a speed-time profile. In the present study, we
build upon each of these approaches to explore the relative con-
spicuousness of Jacky dragon display components.

Standard ellipses and eigenshape analysis

A standard ellipse can be used to summarise movement depicted in
a velocity signature (Fig. 3a). This mathematically defines the ori-
entation of movement in the X/Y plane, together with variance in
the x and y components, in terms of a shape outline (Batschelet
1981). The analysis of shapes has received detailed consideration in
other fields (Dryden and Mardia 1998). We selected eigenshape
analysis (Lohmann and Schweitzer 1988; MacLeod 1999), which is
analogous to principal components for outline data (Lohmann and
Schweitzer 1988; MacLeod 1999). This technique allows us to
identify the shapes that explain the most variation in vegetation
movement and to examine how each display component compares
with these.

First, we determined the standard ellipse for each frame in each
sequence. The parametric equation for a standard ellipse requires
the mean vector, standard deviations in the x and y planes, and the
correlation coefficient (Batschelet 1981). The final parameter is a
variable angle increasing in small steps, which are defined manu-
ally. We used increments of approximately 1.8� to define the outline
in Cartesian (x, y) form using 197 coordinate points.

Second, the Cartesian outline was converted to a mathematical
description using the F* (phi*) form of the Zahn and Roskies’
(1972) shape function (Fig. 3b). This procedure is fully described
by MacLeod (1999). Briefly, it entails (1) interpolating the Carte-
sian points such that the distance between adjacent points is con-
stant, as well as reducing the number of coordinate pairs (we
reduced from 197 to 50 pairs) without any loss of information; (2)
calculating the net angular deviation of the chord connecting
adjacent coordinate points from the chord connecting the previous
set of points; and (3) subtracting the expected net angular change of
a circle of the same mean radius to normalise the shape function.
This final step is necessary because the parameter of interest in
standard eigenshape analysis is the degree to which an outline
deviates from a circle (MacLeod 1999).

Third, we performed singular value decomposition (SVD) of the
covariance matrix between F* shape functions. This step is con-
ceptually similar to principal components analysis (see Klema 1980),
and is useful for identifying important features of a matrix. We
calculated a series of orthogonal shape functions (henceforth called
eigenshapes), each of which described a percentage of the variance in
original shape outlines. Although we calculated all possible eigen-
shapes for vegetation movement, for simplicity we restricted our
analysis to the first two eigenshapes for each vegetation type.

Finally, we calculated the covariance between F* shape func-
tions and the first two eigenshapes of each vegetation type. The
covariance between individual shape functions and a particular
eigenshape revealed the degree of similarity (Fig. 3c). We can
compare the covariance of individual shapes with eigenshapes by
plotting covariance scores with one eigenshape against that of an-
other, in eigenshape space. The purpose of these comparisons was
to examine how the display components compared with vegetation
movement.

Artificial sensory units

Many animals have neurons that exhibit directional selectivity and
speed preferences in response to visual stimuli (e.g. lizards: Stein

and Gaither 1983; see Introduction). We have emulated this phe-
nomenon by constructing a population of artificial sensory units
which process velocity estimates from image sequences (Peters et al.
2002). Differences between movements are revealed in the overall
pattern of responses from the population of sensory units, rather
than a single summary value. While this artificial system has bio-
logically-plausible properties, we developed it as a new descriptive
technique with which to explore the processing of visual motion; it
is not an attempt to model the visual system in detail. Briefly, the
two-dimensional plane of the velocity signature (Fig. 3a) was the
starting point for constructing the sensory units. We divided this
space into 16 directions (increments of 22.5�) and added concentric
circles to represent three speed classes (3, 6 and 9 pixels per frame).
The intersection between each direction and speed determined the
preferred velocity of 48 sensory units (Fig. 4a). Gaussian functions
defined the response properties within a given speed class, with unit
bandwidth increasing with speed (Fig. 4b). All units returned a
maximum response of 1 when the observed velocity exactly mat-
ched the unit’s preferred value. Each sensory unit was presented
with all values in the velocity signature.

Fig. 4 a Determination of the preferred velocity of 48 artificial
sensory units. These form a matrix of 16 directions, with sectors
22.5� wide, by 3 speeds, depicted by concentric circles with radii of
3, 6, and 9 pixels/frame. Filled circles represent units used in
analyses (see text for details). The shaded region is reproduced in b
to illustrate unit response functions. Sensory unit bandwidth
increases with speed, defined by Gaussian functions (SDs of 0.8,
1.3 and 1.8 pixels/frame for slow, moderate and fast units,
respectively)
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Speed-time profiles

Speed of movement is simply the magnitude of velocity (i.e. vector
length). We calculated speed from each velocity estimate by vector
addition and application of Pythagoras’ theorem. Local speed
estimates were then averaged to give an overall movement speed for
each frame in each sequence.

Spatial distribution of vectors in velocity plots

We compared the total ’sweep area’ for each of the display com-
ponents by measuring the spatial distribution of velocity estimates.
Velocity plots collapsed over time were generated using Matlab
v5.2.1 for Macintosh and exported as images. Sweep area was then
measured using NIH Object Image v1.62 by drawing a boundary
around the region where movement was detected by the algorithm.

Statistical analysis

Standard ellipses were used to obtain a descriptive summary of the
velocity estimates depicted in velocity signatures. We analysed
vegetation sequences separately for each species to identify the two
eigenshapes (or principal components for outline shapes) that ex-
plained the greatest variation in movement. The covariance be-
tween individual shapes from vegetation sequences and those from
each of the five push-up display components was then plotted in
eigenshape space.

In the analysis of artificial sensory unit responses, we treated
each unit as a separate case and each of the six sequence types as
repeated measures variables. We grouped sensory units by speed
and direction (Fig. 4). This latter variable was reduced to four
classes: up, down, left, and right. Four of the original 16 directions
(45�, 135�, 225�, and 315�) lie on the boundary between two classes
and were hence excluded. We then compared sensory unit response
to sequence types separately within each quadrant and speed class,
using Friedman two-way (sensory unit·sequence) analyses of var-
iance by ranks. When significant, these were followed by pair-wise
comparisons between each of the display components and vegeta-
tion to isolate the sequence types responsible for the overall effect.
We identified comparisons where the difference in mean rank ex-
ceeded the critical z-value at an alpha level of 0.05, and adjusted for
multiple comparisons within speed class (zcrit=3.50 for all com-
parisons; Siegel and Castellan 1988).

For the final two sets of analyses, we averaged across multiple
sequences of the same display component type from each lizard to
obtain a single individual value (Martin and Bateson 1986). Stu-
dent’s t-tests were then used to compare the speed-time plots from
vegetation sequences and lizard display components, with appro-
priate adjustments for the number of comparisons made to control
type I error. Repeated measures ANOVAs were used when com-
paring between display components; multiple comparisons also
used adjusted alpha levels. To examine differences in the spatial
distribution of vectors in velocity plots, we compared the sweep
area of display components using repeated measures ANOVAs
with a single within-subject factor (sequence type). Contrast tests
were then conducted between the tail-flick and each of the other
components.

Results

Temporal sequence of display components

Jacky dragon push-up displays were delivered in a highly
consistent sequence, starting with the tail-flick, followed
by the backward and forward arm-waves, the push-up,
and the body-rock (Fig. 1). Following the body-rock, the

majority of sequences (67%) repeated from the start of the
push-up, either from the samepositionon the perch (44%)
or after a shift in body position (0.81·0.28=23%). An
alternative pattern involved repetition from the tail-flick
component [0.18+(0.19·0.28)=23%]. Repetition only
rarely occurred from the start of the backward arm-wave
(10%), and never from the start of the forward arm-wave.

Standard ellipse and eigenshape analysis

The first two eigenshapes for each foliage type are pre-
sented in Fig. 5. The orientation of each eigenshape in

Fig. 5 Outline shapes of the first (left column) and second (right
column) eigenshapes for the five species of vegetation, expressed in
Cartesian format. Values (k) represent the percentage of variance in
shape functions explained by each eigenshape
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the plot illustrates the direction of movement, and this
attribute is the most noticeable difference between the
first two eigenshapes for G. linearfolia, K. ambigua,
P. esculentum, and X. arborea. The eigenshapes for
A. longifolia are tighter around the origin than those of
the other plants, revealing less variance in the x- and y-
components (i.e. slower speed) in the original distribu-
tion. The eigenshapes for the other four plants show
greater speed of movement. The proportion of variance
explained by the first eigenshape for G. linearfolia,
K. ambigua, P. esculentum, and X. arborea is relatively
high. When a large majority of shape variation is
attributed to the first eigenshape, the outlines are said
to exhibit a ’fundamental similarity’ with each other
(MacLeod 1999). This suggests that there is little varia-
tion in velocity distributions within each plant species.

Figure 6 presents the covariance between the F*
shape functions derived from standard ellipses (Fig. 3)
corresponding to each frame of the vegetation sequences
and the respective eigenshapes (Fig. 5). As expected
G. linearfolia, P. esculentum, and K. ambigua show po-
sitive covariance with the first eigenshape, but little with
the second eigenshape. The smaller proportion of vari-

ance explained by the eigenshapes of A. longifolia (33%
and 31%) is reflected in the eigenshape space. Both
positive and negative covariance is observed, but all
values are nested against an axis. This suggests that high
covariance with one eigenshape is associated with low
covariance with the other. In contrast, covariance be-
tween the individual shape functions for X. arborea and
the respective eigenshapes indicates little variation on
these two dimensions. This difference in movement
characteristics merits further investigation, but, for the
purposes of this descriptive analysis, we retain only
the first two eigenshapes, which necessarily explain the
greatest variation in individual shapes.

The individual F* shape functions of the display
components were then compared with the eigenshapes of
the vegetation sequences (Fig. 6). These plots indicate
that a considerable proportion of the individual shapes
generated by each display component sequence are
located in a region of eigenshape space not occupied
by the vegetation. In comparison to G. linearfolia,
K. ambigua, and P. esculentum, some frames within the
display component sequences exhibit positive covariance
with both eigenshapes, while others show negative
covariance with both. Individual display component
shapes appear to show either positive or negative
covariance with the first eigenshape of X. arborea, rather
than no relationship (zero covariance).

In summary, there is a clear difference between the
eigenshape space for wind-blown vegetation and that for
each of the display components. Based on the shape of

Fig. 6 Covariance between individual shapes (frames) and the first
two eigenshapes of each species of vegetation, plotted in eigenshape
space. The left panel depicts the covariance between individual
shapes from the vegetation sequences and their respective eigen-
shapes. The remaining panels present the covariance between
display component shapes and the eigenshapes for each vegetation
movement
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the velocity distribution, each motor pattern is thus
structurally distinct from background movement.

Artificial sensory units

Figure 7 summarises the responses of sensory units to
each sequence type. Vegetation movement accounted for
most of the activity in sensory units tuned to slow speeds
(Fig. 7, top). In contrast, units tuned to moderate and
fast speeds responded principally to display components
(Fig. 7, middle and bottom).

For sensory units tuned to slow speed, Friedman
ANOVAs were significant for movement upwards
(C2=13.5, df=5, p=0.019), downwards (v2=14.6,
df=5, p=0.012), and to the left (C2=14.6, df=5, P=
0.012), but not to the right (C2=9.6, df=5, P=0.079).
Pair-wise comparisons (zcrit=3.50, adjusted for the
number of comparisons) reveal that this difference re-
flects greater sensitivity to vegetation movement. Units
tuned to upward movement responded significantly
more toward vegetation than the backward arm-wave

(mean ranks of 5.33 and 1.00, respectively), while units
tuned to downward movement responded more to veg-
etation than both the backward arm-wave (6.00 versus
2.00) and the forward arm-wave (6.00 versus 1.00).
These results suggest that display components were
effectively masked at slow speeds.

All Friedman tests for sensory units tuned to mod-
erate speeds were significant (up: C2=12.3, df=5,
P=0.03; right: C2=13.1, df=5, P=0.023; down:
C2=12.9, df=5, P=0.024; and left: C2=14.6, df=5,
P=0.012). Pair-wise comparisons were conducted using
the same criterion as above (zcrit=3.50). The body-rock
(mean rank of 5.67) and push-up (5.33) elicited greater
responses than vegetation (1.67) for units tuned to
movement right, while the body-rock (6.00) and tail-flick
(5.00) elicited greater responses for movement left than
vegetation (1.33).

Friedman tests for units tuned to fast speeds were
also all significant (up: C2=13.5, df=5, P=0.019; right:
C2=13.9, df=5, P=0.017; down: C2=13.1, df=5,
P=0.023; and left: C2=13.5, df=5, P=0.019). Re-
sponse to the body-rock was significantly different
(zcrit=3.50) from vegetation in units tuned to movement
up (mean ranks of 6.00 versus 2.00), right (5.67 versus
1.33) and left (6.00 versus 1.00). Response to the push-
up (5.33) was also significantly greater than vegetation
(1.33) for movement to the right, while the forward arm-
wave (4.67) exceeded vegetation (1.00) for movement to
the left.

This pattern of results suggests that some display
components have velocity characteristics quite different
from those of vegetation and identifies the speed-orien-

Fig. 7 Response of sensory units to display components, averaged
by direction and speed of movement. Values represent the response
to display components minus the response to vegetation movement.
Positive values thus indicate greater response to displays. Note that
the range of values depicted differs between speed classes to
accommodate the much larger absolute level of sensory unit
activity at slow speeds. Stars indicate significant differences
between display components and vegetation. TF tail-flick, BAW
backward arm-wave; FAW forward arm-wave; PU push-up; BR
body-rock

454



tation attributes principally responsible for structural
conspicuousness.

Speed-time profiles

We calculated the average speed of movement in suc-
cessive frames of all sequences. The speed-time profiles
of representative tail-flick, body-rock, and wind-blown
vegetation are shown in Fig. 8a. Both the tail-flick and
body-rock generate rapidly changing profiles, in contrast
to the almost constant profile of the vegetation sequence.
To test whether these differences were statistically sig-
nificant, we first calculated the difference in speed be-
tween consecutive frames and then averaged the
absolute value of these changes within each sequence
(Fig. 8b). A one-way ANOVA revealed that there were
no significant differences among the vegetation se-
quences after they were log10 transformed to eliminate
positive skew [F(4,59)=2.41, P>0.05], so we pooled these
data. Pair-wise comparisons show that each display
component had significantly greater frame-to-frame
speed changes than the average of vegetation sequences
(tail: T=11.1, df=5; P<0.001; backward arm-wave:

T=9.5, df=5; P<0.001; forward arm-wave: T=6.3,
df=5; P<0.01; push-up: T=11., df=5; P<0.001; body-
rock: T=7.8, df=5, P<0.001).

We also compared the speed characteristics of each of
the display components. A repeated measures ANOVA
revealed a significant overall effect for movement type
[F(4,12)=11.3, P<0.001]. Multiple comparisons showed
that the push-up had significantly greater acceleration/
deceleration values than the tail-flick and backward
arm-wave (P=0.018 and P=0.021, respectively); no
other comparisons were significant.

A final analysis was designed to estimate the relative
conspicuousness of display components in terms of
speed. To be conservative, we used the fastest movement
observed in vegetation sequences—thus simulating
detectability under the most adverse signalling condi-
tions that we measured. We calculated the number of
frames in each display sequence that exceeded the ob-
served maximum speed measured from each of the five
vegetation sequences separately and then averaged
within each lizard for each motor pattern (Fig. 8c). A
repeated-measures ANOVA revealed main effects for
both display component [F(4,12)=79.0, P<0.001] and
vegetation type [F(4,12)=42.3, P<0.001], as well as a

Fig. 8 a Speed-time profiles for
representative tail-flick, body-
rock, and vegetation sequences.
b Mean (+SE) difference in
speed between successive frames
of the display component and
that of pooled vegetation
sequences. c Mean (+SE)
number of frames per sequence
(bars) and mean (±SE)
proportion of sequence (line) in
which the speed of display
movements exceeded the
maximum value measured in
any vegetation sequence. TF
tail-flick, BAW backward arm-
wave; FAW forward arm-wave;
PU push-up; BR body-rock;
V vegetation
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significant interaction [F(16,48)=23.6, P<0.001]. Sub-
sequent comparisons between individual display com-
ponents and vegetation sequences show that the main
effect for movement type was attributable to the tail-
flick. The number of frames in tail-flick sequences ex-
ceeding maximum vegetation speed was significantly
greater than in any of the other display components
(P<0.05 for each comparison); no other comparisons
between display components were significant.

There is an approximately fivefold difference in
duration between the tail-flick and the other display
components (Table 1), suggesting that the much higher
scores for this introductory component (Fig. 8c) might
reflect sequence length, rather than structure. We
therefore conducted a complementary analysis in which
the number of frames exceeding maximum vegetation
speed was expressed as a proportion of sequence length.
Both main effects remained significant [display compo-
nent: F(4,12)=20.4, P<0.01; vegetation type: F(4,12)=
36.6, P<0.01], but the interaction was no longer sig-
nificant. The function depicting this estimate of struc-
tural conspicuousness (Fig. 8c; line) increases linearly
over the course of a typical display from the tail-flick to
the body-rock [F(1,3)=114.6, P<0.001]. No multiple
comparisons for the vegetation type main effect were
significant after adjusting for the number of compar-
isons.

Spatial distribution in velocity plots

The spatial distribution of movement in a velocity plot
defined the relative sweep area of display components
(Fig. 9a). A repeated-measures ANOVA with the single
factor of display component type was marginally non-
significant after adjusting the degrees of freedom due to
violation of the assumption of sphericity [F(4,12)=7.169,
P<0.07]. It seemed likely that this result reflected con-
straints in our original video-recording setup. We used
archival footage of lizards displaying on an artificial
perch (see Materials and methods), which had been
filmed so that animals appeared life-sized on the video
monitor subsequently used for playback presentations
(Ord et al. 2002). This meant that several tail flick se-
quences were cropped (i.e. the most distal section occa-
sionally moved out of the camera field). This was not a
problem with any of the other display movements. We
added additional tail-flick sequences from the same liz-
ards (Table 1) in which they were not restricted to dis-
playing on the artificial perch, but which included other
objects of known size, and generated velocity plots ad-
justed to scale. The inclusion of uncropped sequences
now revealed considerable variation between compo-
nents in average sweep area (Fig. 9b) and the corre-
sponding ANOVA was significant [F(4,12)=10.175,
P=0.012]. Pairwise comparisons between display
movements show that the sweep area of the tail-flick was
significantly greater than that of the backward arm-wave
[F(1,3)=22.244, P=0.018]. Tests comparing the tail-flick

with both the forward arm-wave and the push-up also
approached significance [F(1,3)=8.065, P=0.066 and
F(1,3)=7.877, P=0.067, respectively].

Discussion

Structure of signal and noise

The five components of the push-up display were de-
scribed in terms of direction and speed of movement,
and these characteristics were compared to those of
wind-blown vegetation against which signals would
typically be seen. We focused particularly on why the
tail-flick is used as the introductory display component,
comparing this motor pattern with those that follow it to
assess conspicuousness relative to background move-
ment. We first defined the structure of background noise
using eigenshape analysis (Figs. 3 and 5) and then cal-
culated the covariance between these shapes and those
generated by display motor patterns. There was little
similarity between the signal and background noise in

Fig. 9 a Velocity plot of a representative push-up. Sweep area is
calculated by tracing around the region occupied by individual
vectors (see text for details). b Average (+SE) sweep area for each
display component type. TF tail-flick, BAW backward arm-wave;
FAW forward arm-wave; PU push-up; BR body-rock
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terms of the distribution of velocity estimates (Fig. 6).
This initial analysis thus revealed that there are reliable
structural differences between wind-blown vegetation
movement and display motor patterns.

We then used three complementary analytical ap-
proaches to elucidate the nature of these differences.
First, we collapsed across time to examine direction and
speed of movement, using a population of velocity-tuned
sensory units (Fig. 4; Peters et al. 2002). Results suggest
that units tuned to slow speeds would be excited prin-
cipally by wind-blown vegetation, irrespective of direc-
tion (Fig. 7, top). However, units with moderate and
fast speed preferences would readily detect each com-
ponent of the display, except the backward arm-wave,
against background noise (Fig. 7, middle and bottom).

Second, we ignored direction and considered varia-
tion in speed over time (Fig. 8). All display motor pat-
terns had significantly higher acceleration/deceleration
than those obtained from the relatively smooth speed-
time profile of wind-blown vegetation (Fig. 8b). This
finding supports those from Fleishman’s (1988a) Fourier
analyses of Anolis lizard displays and background. We
also extend this earlier work by assessing relative con-
spicuousness of display components with direct mea-
surements of movement speed. To be conservative, we
used the maximum speed of vegetation sequences in our
recordings as the reference value. The tail-flick exceeds
other display components by a factor of 3–6 when
number of frames with speed greater than background is
used as the unit of measurement (Fig. 8c, bars). How-
ever, this effect is largely a product of movement dura-
tion (Table 1). When speed differences are expressed
using a proportion of frames (Fig. 8c, line), the display
actually increases in structural conspicuousness from the
tail-flick through to the body-rock (Fig. 8c, line). This
interaction between component duration and speed is
particularly important in the context of signal design,
which we discuss below.

Finally, we considered the region in which motion
occurred, by defining the sweep area of each component
(Fig. 9). This analysis suggested that the tail-flick and
the body-rock cover the largest area of the visual field.

The present study is an initial step in the exploration
of Jacky dragon signal design. To make analyses more
tractable, it was necessary to reduce the number of
variables by fixing some parameters. Specifically, we
examined the relative conspicuousness of display com-
ponents at the same viewing distance as plant move-
ment, and during light to typical wind conditions
(Fig. 3). To understand fully the effect of environmental
conditions on these signals, it will be useful to quantify
plant movement during stronger winds, and to obtain
information about the actual conditions in which dis-
plays occur. We plan also to investigate the effects of
variation in viewing distance. Attributes such as sweep
area (expressed as a proportion of the visual field) will
change predictably as a function of the separation be-
tween sender and receiver. In addition, vegetation
movement will not typically occur in the same plane as

the signal, but rather over a range of distances, with
correlated variation in perceived amplitude. We antici-
pate that there will therefore be complex interactions
between signal and noise characteristics once viewing
distance is taken into account. Understanding these
relationships will be important for developing more
sophisticated models of the recognition of movement-
based signals.

Mechanisms of visual processing

Analyses of typical natural scenes reveal highly con-
strained spatial statistics (e.g. Field 1987). Complemen-
tary descriptions of the temporal structure of typical
image streams, as perceived by the animal’s visual sys-
tem, are presented in terms of the movement of the
animal itself, and similarly feature statistics that are
predictable and redundant (van Hateren 1992b). It has
been suggested that early visual processing can reduce
the redundancy in natural scenes (e.g. Barlow 1961;
Srinivasan et al. 1982), or enhance it to maximise the
transfer of spatiotemporal information through noisy
channels of limited capacity, thus increasing signal reli-
ability (e.g. van Hateren 1992a, 1992b). However, these
descriptions largely ignored less frequent, but nonethe-
less functionally-important tasks of visual processing
(Zeil and Zanker 1997). The present analysis is one step
toward the goal of understanding the visual ecology of
an animal that relies on motion cues in contexts such as
detecting predators, identifying prey items, and inter-
acting with conspecifics. If we consider the motion
analysis algorithm used in the present study as being
broadly analogous to early visual processing, then the
output defines the spatiotemporal information available
to higher order visual processes.

For sit-and-wait predators like the Jacky dragon, as
well as many other non-mammalian vertebrates, the
optic tectum is responsible for selective orientation to
relevant environmental events (Ulinski et al. 1992; Fle-
ishman 1992; Persons et al. 1999). Animals are also
capable of responding in a graded fashion. These
observations suggest that some stimulus evaluation is
occurring during the earliest stages of visual processing.
For example, Fleishman (1986) demonstrated that lures
with square-wave motion patterns (i.e. rapid changes in
speed) were more effective at eliciting orienting re-
sponses in lizards (Genus: Anolis) than lures with a
smooth, sinusoidal motion pattern.

There is considerable evidence that visual systems
select sub-sets of stimuli for further processing based on
the direction and speed of movement (Barlow et al.
1964; Sekular 1990; Ibbotson et al. 1994; Cheng et al.
1994). Cells within the optic tectum of the lizard Iguana
iguana have been shown to exhibit both directional
selectivity, and a preference for particular speeds (Stein
and Gaither 1983). The relative response of directionally
selective cells in the optic tectum hence provides a pos-
sible mechanism for assessing differences among visual
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motion cues. The response properties of our artificial
sensory units illustrate one way in which a visual system
might process activity from a population of motion-
sensitive cells. Signal movements were most conspicuous
to sensory units with moderate to fast speed preferences,
while those tuned to slower speeds would likely be
habituated because of constant stimulation from back-
ground vegetation movement.

Our analysis of sensory unit responses considered
movement characteristics in terms of direction and
speed, but ignored variation over time by using a single
summary value. Complementary analyses of speed-time
profiles suggest that temporal changes in visual motion
could provide enhanced discrimination of signal from
noise. The most notable feature of the speed-time pro-
files (Fig. 8) is the contrast between the rapid accelera-
tion/deceleration of display components, and the almost
invariant movement of vegetation (see also Fleishman
1988a). This suggests that if temporal differences in the
response of units were being computed, orienting to
relevant cues could occur even at speeds that are, on
average, less than background noise.

The visual system would also need to achieve trans-
lation-invariance, particularly at the level of analysis
required for orienting responses. A parsimonious solu-
tion would be to use differences in relative speed to
segregate motion events in the environment. Monitoring
the temporal properties of directionally selective cells, as
described above, might be satisfactory. Alternative
explanations have been proposed, which suggest that
calculations of speed, independent of direction and po-
sition (Sekular 1990), or the response of cells sensitive to
adjacent areas moving at different speeds (Orban et al.
1987), might also be mechanisms for segregating visual
input.

Conspicuousness and signal design

Our results demonstrate that each component of the
display is structurally conspicuous against a typical
moving background. However, this attribute is not
sufficient to explain fully signal design. Jacky dragon
displays invariably begin with a tail-flick (Fig. 1), which
has the likely function of attracting the attention of
receivers. Alerting signals typically have simple struc-
ture, high intensity, and short duration (Fleishman
1988b; Richards 1981). For example, the lizard Anolis
auratus uses large-amplitude head movements to gen-
erate the high velocity and acceleration necessary for
engaging the visual grasp reflex of an opponent (Fle-
ishman 1988a). We suggest that the tail-flick may
achieve a similar result, but in a different way. While the
tail-flick appears less intense than other display com-
ponents when speed is expressed as a proportion of
frames exceeding maximum vegetation value, it has the
highest absolute score because its duration is qualita-
tively greater than that of any other movement
(Fig. 8c).

The probability of attracting the attention of con-
specifics in the visual domain is constrained by receiver
orientation; even the most intense signal cannot be de-
tected if it is outside the visual field. Adaptations such as
laterally placed eyes, which increase the field of view
(Moermond 1981), and a high concentration of motion-
sensitive cells in the periphery (Stein and Gaither 1983),
increase the likelihood of detecting salient visual motion.
Nevertheless, constant scanning of the environment is
necessary to obtain full coverage of the visual field, and
this behaviour is characteristic of our subjects. Signals
with a long duration and a large sweep area (Fig. 9), will
therefore have the best chance of being detected. Play-
back experiments (e.g. Ord et al. 2002) are planned to
test the prediction that displays preceded by the tail-flick
will be more conspicuous than others edited to lack this
component.

It would also be interesting to conduct comparative
analyses of the structure of visual alerting signals. The
contrast between the introductory components of the
Jacky dragon display and that of A. aurutus suggest that
there are several possible solutions to the design problem
of attracting receiver attention. We speculate that this
diversity might reflect an energetic trade off between
movement intensity and duration.

Our approach will also allow exploration of the way
in which different habitat types have affected signal de-
sign—for example, testing the prediction that higher
energy displays are needed for densely vegetated areas
(Fleishman 1992). Findings will complement what is
already known about the role of brightness contrast and
spectral sensitivity in shaping the design of movement-
based animal signals (e.g. Leal and Fleishman 2002;
Fleishman et al. 1997).
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